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1 Initial Value Problems I

1.1. The four prinicples are

1. Discretization,

2. Polynomials and linear algebra,

3. Iteration,

4. Linearization.

1.2. Let x = �; y = �0. Then we can separate the equations as follows:8<
:
x0 = y ; x(0) = �0;

y0 = � g

L
sinx ; y(0) = �00:

1.3. No, the equations are non-linear because of the products y1(t) � y2(t).

1.4. The �-method for _y = f(t; y) is de�ned as

yn+1 = yn + h(�f(tn+1; yn+1) + (1� �)f(tn; yn)):

The table below demonstrates which �-values correspond to the standard methods.

� Method
0 Explicit Euler
0.5 Trapezoidal Rule
1 Implicit Euler

Table 1: The standard methods are special cases of the �-method.

1.5. The local error `n+1 is de�ned as
`n+1 = ŷn+1 � y(tn+1);

where ŷn+1 is one iteration of the given method (and problem) with initial value y(tn). Here, y(�)
refers to the actual solution.

1.6. The global error en+1 is de�ned as

en+1 = yn+1 � y(tn+1):

1.7. A time stepping method is said to be convergent if for every �xed T = N � h, all n � N and a given
h > 0 we have

lim
N!1

jjyn;h � y(tn)jj = 0;

where yn;h is the time stepping method's n'th iteration with step size h.

1.8. The following conditions are equivalent:

• The method is stable and the global error satis�es jjenjj = O(hp).
• The method is stable and the local error satis�es jj`njj = O(hp+1).

• The order of convergence is p.
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• The method is exact for polynomials of degree � p, i.e. the error is always zero.

For the explicit and implicit Euler methods we have p = 1 and for trapezoidal rule we have p = 2.

1.9. Using the last statement in the above question and the fact that the trapezoidal rule has p = 2 we try
with a second and third-degree polynomial. With P (t) = at2 + bt+ c we get

LHS = P (tn+1)� P (tn) = a(t2n+1 � t2n) + b(tn+1 � tn);

RHS =
tn+1 � tn

2
( _P (tn+1 + _P (tn))

=
tn+1 � tn

2
(2atn+1 + b+ 2atn + b)

= (tn+1 � tn)(a(tn+1 + tn) + b)

= a(t2n+1 � t2n) + b(tn+1 � tn):

However, for P (t) = t3 we get

LHS = t3n+1 � t3n;

RHS =
tn+1 � tn

2
(3t2n+1 + 3t2n)

=
3

2
(tn+1 � tn)(t

2
n+1 + t2n):

Obviously, the two sides are not the same and thus the method is not exact for polynomials of degree
3. We've therefore veri�ed the method is convergent with order p = 2.

1.10. Since _y(ti) = f(ti; y(ti)), we get

f(ti; yi) � y(ti+1)� y(ti�1)
2h

() y(ti+1) � y(ti�1) + 2hf(ti; y(ti)):

1.11. The stability region is de�ned as the set of all h� 2 C such that jjynjj is bounded for all n when the
method is applied to the linear test equation _y = �y.

Applying this to the explicit Euler method yields

yn+1 = yn + h�yn () yn+1 = (1 + h�) � yn:

The solution to this equation with respect to yi is bounded i� j1+ h�j � 1. Thus, the stability region
is

D = fz : j1 + zj � 1g;
which is a unit circle in C centered at z = �1.

1.12. We do the same thing as above and get

yn+1 = yn + h�yn+1 () yn+1 =
1

1� h�
� yn:

The stability region is therefore

1

j1� h�j � 1 () j1� h�j � 1 =) D = fz : j1� zj � 1g;

which is the complement to a unit circle centered at z = 1.
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1.13. This time we get

yn+1 = yn +
h�

2
(yn + yn+1) () yn+1 =

1 + h�=2

1� h�=2
� yn:

Here we get a stability region

j1 + h�=2j
j1� h�=2j � 1 () j1 + h�=2j � j1 + h�=2j;

which geometrically means "all points that lie further away from z = 1 than z = �1". This is exactly
the same as all points for which Re(z) � 0. Thus,

D = fz : Re(z) � 0g:

1.14. We begin by computing the eigenvalues. For A1; A2 it is trivial, since they are diagonal. We have

A1 : �1 = 10; �2 = 1;

A2 : �1 = 1; �2 = �10:
For A3 we �nd the characteristic polynomial

det(A3 � �I) =

�����1� � 2
0 1� �

���� = �2 � 1;

which has roots �1 = 1; �2 = �1.
For the Euclidean norm (same as the operator 2-norm), the calculations for A1; A2 are once again
trivial. For diagonal matrices, the operator 2-norm is simply the largest absolute value of a diagonal
element, i.e.

jjA1jj2 = jjA2jj2 = 10:

For A3 we have to do more work.

AH
3 A3 = B =

�
1 �2
�2 5

�
=) det(B � �I) =

����1� � �2
�2 5� �

���� = �2 � 6�+ 1;

which has solutions �1 = 3+
p
8; �2 = 3�p8. The norm is precisely the square root of the largest of

these two, i.e.

jjA3jj2 =
p
�1 =

q
3 +

p
8:

For the logarithmic 2-norm �2(A), we use the fact that it can be computed by �nding the largest
eigenvalue of the matrix B = (A + AH)=2. Again, the computations for A1; A2 are trivial, since
B = Ai for these matrices. Thus,

�2(A1) = 10; �2(A2) = 1:

For A3 we get

B =

��1 1
1 1

�
=) det(B � �I) = �2 � 2;

which yields the eigenvalues �1 =
p
2; �2 = �p2. Therefore �2(A3) =

p
2.

1.15. The linear test equation is given by (
_y(t) = �y(t);

y(0) = 1;

which has the solution y(t) = e�t.
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1.16. A method is A-stable if its stability region fully contains C� = fz : Re(z) � 0g.

1.17. Let's try it with the explicit Euler method.

yn+1 = yn + hAyn

yn+1 = yn + hT�T�1yn
T�1yn+1| {z }

zn+1

= T�1yn| {z }
zn

+h�T�1yn

zn+1 = zn + h�zn

We see that we get precisely what we would get if we applied the explicit Euler method to the
diagonalized system _z = �z.

2 Initial Value Problems II

2.1. Yes, since any consistent method (which ERK is) is also convergent.

2.2. See below.

0 0 0 0
1/3 1/3 0 0
2/3 0 2/3 0

1/4 0 3/4

Table 2: Butcher tableau for study question 2.

2.3. We see that this is a explicit method, since A is lower triangular.

Y 01 = f(tn; yn);

Y 02 = f(tn + h=2; yn + hY 01=2);

Y 03 = f(tn + h=2; yn + hY 02=2);

Y 04 = f(tn + h; yn + hY 03);

yn+1 = yn +
h

6
(Y 01 + 2Y 02 + 2Y 03 + Y 04):

2.4. Use the equations above with f(tn; yn) = �yn to get

Y 01 = �yn;

Y 02 = �yn(1 + h�=2);

Y 03 = �yn(1 + h�=2 + (h�)2=4);

Y 04 = �yn(1 + h�+ (h�)2=2 + (h�)3=4):

This yields

yn+1 = yn +
h�

6
yn
�
1 + 2(1 + h�=2) + 2(1 + h�=2 + (h�)2=4) + (1 + h�+ (h�)2=2 + (h�)3=4)

�
= (1 + h�+ (h�)2=2 + (h�)3=6 + (h�)4=24)yn ()

P (h�) =

4X
k=0

(h�)k

k!
� eh�;
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which is not surprising, since e�t is the solution to the equation.

2.5. From the Butcher tableu we get the stage derivatives

Y 01 = f(tn + h=3; yn + hY 01=3) () Y 01 =
1

1� h�=3
� �yn;

Y 02 = f(tn + 2h=3; yn + hY 01=3 + hY 02=3) () Y 02 =
1

(1� h�=3)2
� �yn:

Inserting this into the update equation gives

yn+1 = yn +
h

2
(Y 01 + Y 02) = yn � 1 + h�=3� (h�)2=18

(1� h�=3)2
()

R(z) =
1 + z=3� z2=18

(1� z=3)2
:

To check if the method (works for RK-methods in general) is A-stable, the stability function has to
satisfy

1. All poles satisfy Re(z) > 0.

2. jR(i!)j � 1 8! 2 R.

The �rst condition is satis�ed since the only pole is z = 1=3. For the second condition we have

R(i!) =
1 + i!=3 + !2=18

(1� i!=3)2
=) jR(i!)j2 = (1 + !2=18)2 + !2=9

(1� !2=9)2 + 4!2=9
=

!4=182 + 2!2=9 + 1

!4=81 + 2!2=9 + 1
� 1 8! 2 R:

We conclude that this method is A-stable.

2.6. An embedded method computes two approximations simultaneously by utilizing common stage deriva-
tives.

2.7. No ERK-method is A-stable because their stability function is a polynomial (the second condition in
the exercise above cannot be satis�ed). According to Dahlquist's second barrier theorem, the highest
order of a A-stable multistep method is p = 2. Therefore no such method of order 3 exists.

2.8. RK is a special case of the more general multistep method, which in is on the form

yn+1 = �(f; h; y0; y1; : : : ; yn; yn+1)

for some function �.

2.9. A linear multistep method is zero-stable if the its generating polynomial �(w) satis�es the root con-
dition, which means that all roots of � lie inside (or on) the unit circle.

a) yn+2 = yn+1 yields

�(w) = w2 � w =) w1 = 0; w2 = 1 =) zero-stable:

b) yn+2 = yn yields
�(w) = w2 � 1 =) w1 = 1; w2 = �1 =) zero-stable:

c) yn+2 =
4
3yn+1 � 1

3yn yields

�(w) = w2 � 4

3
w +

1

3
=) w1 =

1

3
; w2 = 1 =) zero-stable
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d) yn+2 = 3yn+1 � 2yn yields

�(w) = w2 � 3w + 2 =) w1 = 1; w2 = 2 =) not zero-stable:

2.10. This is the AM4-method. It is implicit since fn+3 is present.

2.11. We use the theorem
kX

j=0

ajj
m = m

kX
j=0

bjj
m�1; m = 0; 1; : : : ; p:

Here, interpret 00 = 1. We have k = 2; a0 = �1; a1 = 0; a2 = 1; b0 = 1=3; b1 = 4=3; b2 = 1=3. From
that we get

a0 � 0m + a1 � 1m + a2 � 2m = m(b0 � 0m�1 + b1 � 1m�1 + b2 � 2m�1) ()
�0m + 2m =

m

3
(0m�1 + 4 + 2m�1)

For m = 0 both sides are equal to 0, for m = 1, both sides are equal to 2, for m = 2 both sides are 4,
for m = 3 both sides are 8 and for m = 4 both sides are 16. For m = 5 however, the left hand side is
32, but the right is 100

3 . Thus, the method is of consistency order 4.

2.12. A k-step BDF-method is de�ned as

kX
j=1

rj

j
� yn+k = hf(tn+k; yn+k) =) BDF3: ryn+3 +

r2

2
yn+3 +

r3

3
yn+3 = hf(tn+3; yn+3):

Here, the operator rj is de�ned recursively as(
rjyn = rj�1yn �rj�1yn�1; j > 1;

ryn = yn � yn�1; j = 1:

From this, we get

ryn+3 = yn+3 � yn+2;

r2yn+3 = yn+3 � 2yn+2 + yn+1;

r3yn+3 = yn+3 � 3yn+2 + 3yn+1 � yn:

The formula then becomes�
1 +

1

2
+

1

3

�
yn+3 + (�1� 1� 1)yn+2 +

�
1

2
+ 1

�
yn+1 � 1

3
yn = hf(tn+3; yn+3) ()

11

6
yn+3 � 3yn+2 +

3

2
yn+1 � 1

3
yn = hf(tn+3; yn+3):

This method is convergent with order p = 3. To check zero-stability, we check if the generating
polynomial ful�lls the root condition.

�(w) =
11

6
w3 � 3w2 +

3

2
w � 1

3
=) w1 = 1; w2;3 =

1

22
(7� i

p
39):

We have jw2;3j2 = 1
222 (7

2 + 39) = 2
11 < 1, so the method is zero-stable.
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3 Boundary Value Problems I

3.1. With N = 4 we get the step size h = 1=(N + 1) = 0:2. The boundary conditions are homogeneous, so
the boundary condition vector is zero. We get

F (y) =
1

0:04
�

0
BB@
�2 1 0 0
1 �2 1 0
0 1 �2 1
0 0 1 �2

1
CCA

| {z }
T

0
BB@
y1
y2
y3
y4

1
CCA

| {z }
y

�

0
BB@
0:04 + y21
0:16 + y22
0:36 + y23
0:64 + y24

1
CCA

| {z }
f(x;y)

= 0:

3.2. The Jacobian is

@F

@y
=

0
BBB@

@f1
@y1

@f1
@y2

@f1
@y3

@f1
@y4

@f2
@y1

@f2
@y2

@f2
@y3

@f2
@y4

@f2
@y1

@f2
@y2

@f2
@y3

@f2
@y4

@f4
@y1

@f4
@y2

@f4
@y3

@f4
@y4

1
CCCA =

0
BB@
�2y1 � 50 25 0 0

25 �2y2 � 50 25 0
0 25 �2y3 � 50 25
0 0 25 �2y3 � 50

1
CCA :

3.3. The aim of the Newton method is to �nd roots to some function f(x). It is done iteratively in the
following way:

1. Linearize f around xn.

2. The root of the linearized function is xn+1.

The �rst step results in

y = f(x) � f(xn) +
@f

@x
(xn) � (x� xn):

Then, �nding the root gives y = 0;x = xn+1 and we get

0 = f(xn) +
@f

@x
(xn) � (xn+1 � xn) () xn+1 = xn �

�
@f

@x
(xn)

��1
� f(xn):

In our case, simply replacing f(x) with F (y) yields

yn+1 = yn �
�
@F

@y
(yn)

��1
� F (yn):

3.4. There are a few di�erent approaches that handle the Neumann-condition which result in second order
convergence. The simplest is by letting

y0(1) � yN+1 � yN�1
2h

= �

and choosing the step size h = 1=N instead of h = 1=(N + 1) so that xN = 1 and xN+1 = xN + h. In
our case (with N = 4 =) h = 0:25 and � = 0), this results in y5 = y3. Therefore, the last second
derivative approximation is reduced to

y5 � 2y4 + y3
h2

=
2y3 � 2y4

h2
:

The equation F (y) = 0 becomes

F (y) =
1

0:0625
�

0
BB@
�2 1 0 0
1 �2 1 0
0 1 �2 1
0 0 2 �2

1
CCA
0
BB@
y1
y2
y3
y4

1
CCA�

0
BB@
0:0625 + y21
0:25 + y22
0:5625 + y23

1 + y24

1
CCA = 0:

Note the 2 instead of a 1 in the last row which resulted from the last second derivative approximation.
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3.5. The two most common (and equivalent) de�nitions are

�[A] = sup
x 6=0

Re(hx; Axi)
hx;xi = lim

h!0+

jjI + hAjj � 1

h
;

for some scalar product h�; �i and norm jjxjj2 = hx;xi.

3.6. A basic property of the logarithmic norm says that

jjA�1jj1 = � 1

�1[A]
:

3.7. Another basic property of the logarithmic norm is that �[A] � jjAjj. Thus, the �rst bound is sharper.

3.8. We solve this and the next exercise using the de�nition

�[A] = lim
h!0+

jjI + hAjj � 1

h
=) �[�] = lim

h!0+

jI + h�j � 1

h
:

Let f(h) = j1 + h�j and � = a+ bi. Then

f(h) =
p
(1 + ha)2 + (hb)2 =) f(0) = 1;

f 0(h) =
1

2f(h)
(2a(1 + ha) + 2b(hb)) =) f 0(0) = a:

Taylor expansion yields f(h) = 1 + ah+O(h2) and we get

�[�] = lim
h!0+

(1 + ah+O(h2))� 1

h
= lim

h!0+
(a+O(h)) = a = Re(�):

3.9. See previous exercise.

3.10. A bound is sharp when equality can be attained. Since the test equation has the solution y(t) = e�t,
we get (again letting � = a+ bi)

jy(t)j = je�tj = jeat � eibtj = eat = e�[�]t:

In other words, the bound with the logarithmic norm is always sharp for the test equation. For the
bound with the norm we get

ej�jt = e
p
a2+b2t � eat;

with equality when b = 0 and a � 0, i.e. when � is a positive real number.

4 Boundary Value Problems II

4.1. This problem is incorrect. In fact, the method of order 0. The culprit is the discretization of the
di�erential operator. Use the shorthands y(xn) = y; y0(xn) = y0; y00(xn) = y00 and do the Taylor
expansion

y(xn+1) = y + hy +
h2

2
y00 +O(h3);

y(xn�1) = y � hy +
h2

2
y00 +O(h3):
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Also, note that pn is just the function p evaluated at the grid points, i.e. pn = p(xn). Inserting this
into the di�erential operator discretization formula

pn+1yn+1 � 2pnyn + pn�1yn�1
h2

gives us

pn+1 � 2pn + pn�1
h2| {z }
O(h2)

�y + pn+1 � pn�1
2h| {z }
O(h2)

�2y0 + pn+1 + pn�1
2h| {z }

O(h�1)

� hy00|{z}
O(h)

+O(h) = O(1):

The operator discretization is therefore only of order 0. As further evidence, Erik Danielsson did an
implementation of this method to verify this, see A.

4.2. The matrices are presented in the order symmetric (A = AT ), skew-symmetric (A = �AT ) and lower
triangular (i < j =) aij = 0).0

BB@
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1
CCA ;

0
BB@

0 1 0 0
�1 0 1 0
0 �1 0 1
0 0 �1 0

1
CCA ;

0
BB@
1 0 0 0
2 1 0 0
3 2 1 0
4 3 2 1

1
CCA :

4.3. The characteristic equation has the solutions

6r2 � 5r + 1 = 0 () r1 =
1

2
; r2 =

1

3
:

Thus, the general solution is
uj = c12

�j + c23
�j

for some c1; c2. We use the initial conditions to determine the constants.(
c1 + c2 = 1;

c12
�N�1 + c23

�N�1 = 0
() c1 = � (2=3)N+1

1� (2=3)N+1
; c2 =

1

1� (2=3)N+1
:

The solution is therefore

uj =
1

1� (2=3)N+1
(3�j � (2=3)N+1 � 2�j):

4.4. This false. A counterexample is

S =

�
1 2
1 1

�
; T =

�
5 1
2 4

�

for which �[S] = 1�p2 and �[T ] = 3; 6. However, �[S + T ] = 1
2 (11�

p
37).

4.5. If Au = �u, then

u = (A�1A)u = A�1(Au) = A�1�u () A�1u =
1

�
u:

4.6. Yes this is true. For a diagonolizable matrix tA = S�1 diag(t�1; : : : ; t�n)S the matrix exponential is
de�ned as

etA = S�1 diag(et�1 ; : : : ; et�n)S:
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4.7. a) The eigenvalues are �[T�x] =
2

�x2 (Re(e
i�k=(N+1)�1)), which are the \x-values" of uniformly spaced

points on a semicircle with radius 2=�x2 centered at x = �2=�x2. The �gure below demonstrates
this.

Re

Im

�4=�x2 �2=�x2

Figure 1: The eigenvalues �[T�x] =
2

�x2 (cos(�k=(N + 1))� 1) are represented by �.

b) There is no good way of visualizing the eigenvalues of the inverse matrix. Let �x = 1=(N +1) and
rewrite

2(cos(�k=(N + 1))� 1) = �4 sin2
�

k�

2(N + 1)

�
The eigenvalues for T�x become (use 2 sin2 � = 1� cos(2�))

2

�x2
(cos(�k=(N + 1))� 1) = �4(N + 1)2 sin2

�
k�

2(N + 1)

�
: (1)

Another useful way (which we will use in later exercises) is to write the eigenvalues as

� 4

�x2
� sin2(k��x=2): (2)

For the inverse matrix we therefore get

�
�
T�1�x

�
= 1=�[T�x] = � 1

4(N + 1)2 sin2(k�=[2(N + 1)])

As we'll see in the next subproblem these eigenvalues will all cluster in a small region when N !1
(we already see in the expression above that the values are rather small).

c) As N !1 the eigenvalues of the \regular" matrix T�x given by (1) approach

lim
N!1

�4(N + 1)2 sin2
�

k�

2(N + 1)

�
= lim

N!1
�4(N + 1)2

k2�2

4(N + 1)2
= �k2�2:

For the inverse we therefore get a small interval in which all eigenvalues cluster.

�
�
T�1�x

� � � 1

k2�2
=) �

�
T�1�x

� 2 (�1=�2; 0):
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4.8. a) A property of the logarithmic norm is that for any matrix A and t � 0 it holds that jjetAjj2 � et�2[A].
Applying this to T�x, which is symmetric, we get �2[T�x] = t�1 (the largest eigenvalue given by
(1)) and thus

jjetT�x jj2 � et�1 = e�4(N+1)2 sin2(�=[2(N+1)])t � e��
2t

In fact, for symmetric, positive de�nite (all eigenvalues are positive) matrices A it is the case that
jjAjj2 = �2[A]. Thus the bound given above is sharp for all t � 0.

b) As in the previous exercise, drawing won't give any useful information. As the next subproblem

suggests, the eigenvalues will be approximately e�tk
2�2 2 (0; e�t�

2

), which is a small interval
(depending on t) on the positive real axis.

c) From the previous exercise we know the eigenvalues of T�x are approximately �k2�2. Therefore

the eigenvalues of etT�x will approximately be e�tk
2�2 .

d) If �x is �xed then so is N . Therefore

lim
t!1

�[etT�x ] = lim
t!1

e�4t(N+1)2 sin2(k�=[2(N+1)]) = 0:

e) Here we have the matrix �T�x for which the largest eigenvalue is ��N , where �N is given by (1).
The bound becomes

jje�tT�x jj2 � e�t�N = e4(N+1)2 sin2(N�=[2(N+1)])t � eN
2�2t;

which is unbounded as N !1. Just like in the previous problem, the bound is always sharp since
e�tT�x is symmetric and positive de�nite. As �x! 0 we therefore get jje�tT�x jj2 !1.

f) Solving _u = T�xu with explicit Euler method gives the following time discretization

ut+1 = ut +�t � T�xut = (I +�t � T�x)ut;
which is stable i� j�[I +�t � T�x]j � 1. For these eigenvalues, it is the case that

�[I +�t � T�x] = 1 + �t � �[T�x];
and �[T�x] < 0 (see (1)). The above expression's absolute value is therefore only less than 1 if

��t � �[T�x]� 1 � 1 () �t � � 2

�[T�x]
� 2

j�N j ;

where �N is the most negative (\smallest") eigenvalue, i.e.

�N = �4(N + 1)2 sin2
�

N�

2(N + 1)

�
� �4(N + 1)2 = �4=�x2

for large N . The bound is therefore approximately

�t � 2

4=�x2
=

�x2

2
() �t

�x2
� 1

2
;

which is the so-called CFL-condition.

g) For the implicit Euler method, we instead use

ut+1 = ut +�t � T�xut+1 () ut+1 = (I ��t � T�x)�1ut:
Calculating the eigenvalues of (I ��t � T�x)�1 yields

�
�
(I ��t � T�x)�1

�
=

1

1��t � �[T�x] > 0
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since �[T�x] < 0. The stability condition is therefore

1

1��t � �[T�x] � 1 () �t � 0:

In other words, the implicit method is always stable no matter the choice of �t, which is its
advantage.

h) The implicit method, since the CFL condition for the explicit method will require a small �t if �x
is small. More precisely, if we half the size of �x we will have to take a four times as small �t.

4.9. The given expression is derived in the following way:

jjujj22 =
Z 1

0

[u(t; x)]2 dx ()

@jjujj22
@t

=

Z 1

0

@

@t
[u(t; x)]2 dx =

Z 1

0

2 � u(t; x) � ut(t; x) dx = 2hu; uti () 1

2

@jjujj22
@t

= hu; uti:

Next, use the fact that ut = uxx and do integration by parts.

1

2

@jjujj22
@t

= hu; uti = hu; uxxi = [u � ux]x=1
x=0| {z }

0

�
Z 1

0

[ux]
2 dx = �jjuxjj22 () 1

2

@jjujj22
@t

+ jjuxjj22 = 0:

Now, Sobolev's lemma tells us that jjuxjj22 � �2jjujj22. Use this fact in the above result together with
the substitution y(t) = jju(t; �)jj22 to get

1

2

dy

dt
+ �2y � 0;

which is a di�erential inequality. If we had equality, the solution would be

y(t) = e�2�
2t � y(0):

Since the derivative in our inequality is smaller than the above solution, the solution to the inequality
decays faster than the above solution. Therefore

y(t) � e�2�
2t � y(0) () jju(t; �)jj22 � e�2�

2t � jju(0; �)jj22:

4.10. This matrix represents the di�erence relation

yn+1 � yn�1 = �yn; y0 = yN+1 = 0:

Use Vi�etes theorem on the characteristic equation:

r2 � 1 = �r () r2 � �r � 1 ()
(
r1 + r2 = �;

r1r2 = �1:

The second equation yields r1 = �r�12 = r. This implies that r1 = i!; r2 = i=! and the general
solution is therefore

yn = A(i!)n +B(i=!)n = in
�
A!n +B!�n

�
:

The boundary conditions yield

y0 = A+B = 0 =) yn = Ain
�
!n + !�1

�
;

yN+1 = AiN+1
�
!N+1 � !�(N+1)

�
= 0 =) !N+1 � !�(N+1) = 0:

13



The last equation can be used to solve for !.

!N+1 � !�(N+1) = 0

!2(N+1) = 1 = ei2�k

!k = ei�k=(N+1):

Now we obtain �k from the �rst equation in Vi�eta's theorem.

�k = r1;k + r2;k = i
�
!k + !�1k

�
= i

�
ei�k=(N+1) + e�i�k=(N+1)

�
= 2i cos(�k=(N + 1))

4.11. a) Use the previous exercise and the fact that �[cA] = c�[A] for any matrix A and constant c to get

�[S�x] = �[S=(2�x)] =
1

2�x
�[S] =

i

�x
cos(�k=(N + 1)) =

i

�x
cos(�x�k):

b) Since S�x is skew-symmetric, i.e. S�x = �ST�x, it is also normal, i.e. ST�xS�x = S�xS
T
�x. For

normal matrices A it is the case that jjAjj2 = maxk j�kj. In our case,

jjS�xjj2 = j�1j =
���� i

�x
cos(�=(N + 1))

���� = 1

�x
cos(�=(N + 1)):

c) For normal matrices A it also holds that �2[A] = maxkfRe(�k)g, which in our case means �2[S�x] =
0 since all eigenvalues are purely imaginary.

4.12. a) Use the fact that �2[
d2

dx2 +
d
dx + 1] � �2[

d2

dx2 ] + �2[
d
dx ] + �[1]. For �2[

d2

dx2 ] we have

hu00; ui
hu; ui =

�hu0; u0i
hu; ui = �hu

0; u0i
hu; ui = �jju

0jj22
jjujj22

� ��2jjujj22
jjujj22

= ��2:

To get the inequality we used Sobolev's lemma: jju0jj2 � �jjujj2. Thus, �2[ d2dx2 ] = ��2. For �2[ ddx ]
we get

hu0; ui
hu; ui =

�hu; u0i
hu; ui ;

but since u is real-valued hu0; ui = hu; u0i and we have

hu0; ui = �hu; u0i =) hu0; ui = 0:

Therefore, �2[
d
dx ] = 0. Calculating �2[1] = 1 is trivial and in total we get

�2

�
d2

dx2
+

d

dx
+ 1

�
� 1� �2:

To verify uniqueness, let A = d2

dx2 +
d
dx+1 and v 6= u another solution Av = f with v(0) = v(1) = 0.

Then the di�erence u� v is a solution to the homogeneous equation, since

Au = f; Av = f =) A(u� v) = Au�Av = f � f = 0;

u(0)� v(0) = 0� 0 = u(1)� v(1) =) Boundary conditions satis�ed.

Since �2[A] < 0, an inverse A�1 exists and therefore

A(u� v) = 0 () u� v = A�1 � 0 = 0 () u = v;

which is contradiction. The solution is therefore unique.
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b) Let h = 1=(N + 1) and use the FDM

un+1 � 2un + un�1
h2

+
un+1 � un�1

2h
+ un = f(xn);

where xn = n � h; n = 0; : : : ; N + 1 and u0 = uN+1 = 0. The corresponding matrix Vh is

Vh =
1

h2
� tridiag �1 �2 1

�
+

1

2h
� tridiag ��1 0 1

�
+ I

and the discretized problem becomes

Vhu = f ; u =

0
BBB@
u1
u2
...
uN

1
CCCA ; f =

0
BBB@
f(x1)
f(x2)
...

f(xN )

1
CCCA :

Since Vh is invertable, the system has a unique solution.

c) Here, jj � jj�x is the rms-norm. We use the notation jj � jjh instead and use the de�nition

jjVhjjh =
p
h � jjVhjj2:

We will use the logarithmic norm to give a bound to jjVhjj2 and therefore jjVhjjh. Unfortunately, we
cannot directly compute �2[Vh], since the eigenvalues of Vh are unknown. However, we can apply
the triangle inequality to get around this.

�2[Vh] � �2[Sh] + �2[Th] + �2[I] = maxRe(�[Sh]) + maxRe(�[Th]) + 1 = � 4

h2
� sin2(�h=2) + 1;

where �[Sh] and �[Th] were calculated 4.11a) and (2) respectively. Now, taking the operator
2-norm of the equation u = V �1h f results in

jjujj2 = jjV �1h f jj2 � jjV �1h jj2 � jjf jj2 � � jjf jj2
�2[Vh]

� jjf jj2
4 sin2(�h=2)=h2 � 1

:

In the last inequality we traded the minus sign for division:

jjf jj2
�2[Vh]

� jjf jj2
1� 4 sin2(�h=2)=h2

() � jjf jj2
�2[Vh]

� � jjf jj2
1� 4 sin2(�h=2)=h2

:

Multiplying both sides by
p
h yields

jjujjh � jjf jjh
4 sin2(�h=2)=h2 � 1

:

4.13. a) For the logarithmic 2-norm of A = d2

dx2 + !2 we get

�2[A] � �2

�
d2

dx2

�
+ �2

�
!2
�
= !2 � �2:

When �2[A] < 0 the inverse operatorA�1 exists and the solution is therefore unique. This condition
is guaranteed if j!j < �. The condition is therefore �� < ! < �.
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b) The problem will have multiple solutions. To see this, examine the homogeneous equation

d2yh
dx2

+ �2yh = 0; yh(0) = yh(1) = 0:

This equation has the general solution yh(x) = a cos(�x)+ b sin(�x). The �rst boundary condition
results in

yh(0) = a = 0 =) yh(x) = b sin(�x):

However, the second boundary condition holds for any b since sin(�) = 0. The homogeneous
equation therefore has in�nitely many solutions yh(x) = b sin(�x). If we have any particular
equation Ayp = g(x) with a solution yp we can always add the homogeneous solution yh to it
and get a new solution. Therefore, the equation Ay = g(x) with ! = � will have in�nitely many
solutions for any g.

5 Partial Differential Equations I

5.1. A strategy to show that a problem depends continuously on the initial condition is to �nd a upper
bound for the norm of the solution which depends on the norm of the initial condition as well as time.
In our case, we can use the result from exercise 4.9:

jju(t; �)jj22 � e�2�
2tjju(0; �)jj22 = e�2�

2tjjgjj22:

Now, suppose we want to solve the same problem, but with a slightly perturbed initial condition
u(0; x) = h(x) such that

jjg � hjj22 < "

for some (arbitrarily) small ". Let the solution to this problem be v(t; x) (we won't concern ourselves
with the existence of this solution). Then, the di�erence w(t; x) = u(t; x)� v(t; x) satis�es

wt = wxx; w(t; 0) = w(t; 1) = 0; w(0; x) = g(x)� h(x)

because the PDE is linear. Now, apply the result from problem 4.9 to get

jjw(t; �)jj22 = jju(t; �)� v(t; �)jj22 � e�2�
2tjjg � hjj22 < "e�2�

2t;

which goes to zero as " ! 0 for any �xed t. This shows the solution's continuous dependence on the
initial condition, since for any given t; " > 0, we can pick � = "e�2�

2t such that

jjg � hjj22 < " =) jju(t; �)� v(t; �)jj22 < �:

5.2. We know the eigenfunctions and -values of � @2

@x2 over [0; 1] with homogeneous Dirichlet-conditions are

'k(x) = sin(k�x); �k = k2�2:

We do the ansatz u(t; x) = uk(t)'k(x) and get

@u

@t
= u0k(t)'k(x) = �@2u

@x2
= uk(t)�k'k(x) () u0k(t) = �uk(t) () uk(t) = cke

�kt

Thus, the functions un(t; x) = cne
n2�2t sin(n�x) are all solutions to the problem. If we pick cn = nr

with r < 0 we get (note that jj sin(n�x)jj2 =
p
2)

jjun(0; x)jj2 =
p
2nr ! 0 as n!1:
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This means that the initial condition gets arbitrarily small for large n. For the solution un(t; x)
however, we get

jjun(t; x)jj2 =
p
2nren

2�2t !1 as n!1
for any �xed t because exponential functions grow quicker than power functions. In other words, as
we make the initial condition smaller and smaller, the solution blows up to in�nity, which proves that
the problem is ill-posed by counter-example.

5.3. The problem has the solution
u(t) = etT�xu(0):

With perturbed initial condition v(0) = u(0) + ", the solution v is

v(t) = etT�xv(0) = etT�xu(0) + etT�x":

The solution is therefore perturbed by etT�x".

5.4. The perturbation is now instead e�tT�x". Since the largest eigenvalue of e�tT�x is approximately
eN

2�2t, which for �xed t grows arbitrarily large as N !1, the perturbation will also grow arbitrarily
large for any given ". Thus, we conclude that the problem is ill-posed.

5.5. This can easily be proved using powerful results from matrix theory. Let J be the Jordan normal form
of A, i.e. A = S�1JS for some invertable S. The the matrix function Q(A) is de�ned as (it can also
be algebraically derived)

Q(A) = S�1Q(J)S =) �[Q(A)] = �[Q(J)]:

Thus, we only have to prove this for a Jordan matrix J . For any matrix it is the case that

�[(�I + J)�1] = 1=(� + �[J ]);

�[I + �J ] = 1 + ��[J ]):

The last piece of the puzzle is to show that

�[(�I + J)�1(I + �J)] = �[(�I + J)�1] � �[I + �J ]:

But for a Jordan matrix this is trivial, because the matrices in question are upper triangular. For
upper triangular matrices A;B the eigenvalues are the diagonal elements, i.e. �[A] = aii; �[B] = bii,
and the product C = AB is also upper triangular with diagonal elements cii = aiibii. Combining these
facts shows the identity stated above and therefore

�[Q(J)] = �[(�I + J)�1(I + �J)] = �[(�I + J)�1] � �[I + �J ] =
1 + ��[J ]

� + �[J ]
= Q(�[J ]):

5.6. Using the previous exercise, we get

Q(w) =
1 + w�t=2

1� w�t=2
=) �[B(�t;�x)] = Q(�[T�x]) =

1 + �[T�x]�t=2

1� �[T�x]�t=2

with �[T�x] = �4(N + 1)2 sin2(k�=[2(N + 1)]), see (1). The condition for stability is

j�[B(�t;�x)]j � 1 =) j1 + �[T�x]�t=2j
j1� �[T�x]�t=2j � 1;

which is the same inequality we got in exercise 1.13. It is equivalent to the inequality

Re(�[T�x]�t=2) � 0;

which holds for any �t � 0, since �[T�x] < 0. Thus, there is no restriction on �t.
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5.7. a) �2[R�x] = �2[�R�x] = 0, since the eigenvalues are purely imaginary.

b) The solution to _u = R�xu with u(0) = u0 is

u = etR�xu0 =) jjujj2 = jjetR�xu0jj2 � jjetR�x jj � jju0jj2 � et�[R�x]| {z }
1

�jju0jj2 = jju0jj2:

Using the same argument as in exercise 5.1, we conclude that the problem is well-posed.

Full solution: Replace u by u � v in the above result and let jju0 � v0jj2 < " for some small ".
Then

jju0 � v0jj2 < " =) jju� vjj2 � jju0 � v0jj < �

with � = ".

In reverse time, the result is the same because �2[R�x] = �2[�R�x]. The problem is therefore
well-posed in both forward and reverse time.

5.8. From the calculations done in problem 4.12a) we know that

�2

�
d2

dx2
+K

d

dx
+ 1

�
� 1� �2;

which is both negative and independent of K. Abbreviate A = d2

dx2 +K d
dx + 1. Since �2[A] < 0 there

exists an inverse operator A�1 and the unique solution to the equation is therefore y = A�1g. Taking
the norm of both sides of the equation and using the properties

�2[A] < 0 =) jjA�1jj2 � � 1

�2[A] ; jjAujj2 � jjAjj2 � jjujj2

yields

jjyjj2 = jjA�1gjj2 � jjA�1jj2 � jjgjj2 � � 1

�2[A] � jjgjj2 =
jjgjj2
�2 � 1

:

As in previous problems, we conclude from the above that the problem is well-posed (independently
of K).

5.9. We use the same strategy as in the last problem. This time, however, we have �2[A] � K � �2, which
is guaranteed to be negative only for K < �2. If �2[A] is non-negative, the solution is not unique
anymore and the problem is then ill-posed. Hence, the value of K matters for this problem.

5.10. This is pretty much a combination of problems 4.9 and 5.1. A full solution would look something like
this: Start by deriving the squared 2-norm of u.

@

@t
jjujj22 =

@

@t

Z 1

0

u2 dx =

Z 1

0

@

@t
u2 dx =

Z 1

0

2uut dx = 2hu; uti;

since the scalar product is de�ned as hu; vi = R 1
0
uv dx. Now, from the given equation we know

ut = ux +
uxx
Pe

:

Inserting this into the scalar product above yields

2hu; uti = 2hu; ux + uxx
Pe

i = 2 hu; uxi| {z }
=0

+
2

Pe
� hu; uxxi = 2

Pe
� hu; uxxi = � 2

Pe
� jjuxjj22;
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since hu; uxxi = �hux; uxi = �jjuxjj22. After combining the above results and using Sobolev's lemma
we get (similar to problem 4.9)

djjujj22
dt

+
2

Pe
� jjuxjj22 = 0 () djjujj22

dt
+

2�2

Pe
� jjujj22 � 0:

The solution to the di�erential inequality is

jju(t; x)jj22 � e�2�
2t=Pe � jju(0; x)jj22

and by the same argument as in problem 5.1 we can conclude that the problem is well-posed.

5.11. Reverse time means that our equation instead becomes

ut = �ux � uxx
Pe

;

i.e. the right hand side switches sign. If we run through the procedure from the previous problem
with this equation again we see that replacing ux with �ux doesn't change anything, since hu; uxi =
�hu; uxi = 0. The culprit is the hu; uxxi term which now is negative and applying Sobolev's lemma
will now give us a lower bound instead of an upper bound:

djjujj22
dt

� 2

Pe
� jjuxjj22 = 0 () djjujj22

dt
� 2�2

Pe
� jjujj22 � 0:

It is here the argument from the previous exercise breaks down. This does, of course, not prove that
the problem is ill-posed. To do this, we will have to do something similar to problem 5.2. I will not
provide the rest of the solution, as this material is not part of the course any more, and because a
solution to a similar problem already exists as mentioned.

5.12. Insert u(x; y) = X(x)Y (y) into �u = �u and get

X 00Y +XY 00 = �XY () X 00

X
+
Y 00

Y
= �:

The �rst term only depends on x, while the second only depends on y and the right hand side is
constant. From that, we conclude that each term on the left hand side must be constant. Granted we
know that � is negative, let X 00=X = ��; Y 00=Y = �� for some positive �; �. From that we get the
three equations 8><

>:
X 00 + �X = 0; X(0) = X(1) = 0;

Y 00 + �Y = 0; Y (0) = Y (1) = 0;

� = ��� �:

The �rst two equations are exactly the same and are simply the eigenvalue problem for d2

dx2 over [0; 1]
with homogeneous Dirichlet conditions. They have the solutions(

Xi(x) = ai sin(i�x); �i = (i�)2 = ��i;
Yj(y) = bj sin(j�y); �j = (j�)2 = ��j

with i; j > 0. From that we conclude that the eigenvalues for the 2-dimensional Laplacian are

�i;j = ��� � = �i + �j = ��2(i2 + j2):

The largest eigenvalue is �1;1 = �2�2.
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5.13. Let h = �x = �y and use the shorthand T (Xi) = h�2(Xi�1 � 2Xi +Xi+1). Then with ui;j = XiYj
we get(

ui�1;j�2ui;j+ui+1;j
h2 = T (Xi)Yj ;

ui;j�1�2ui;j+ui;j+1
h2 = XiT (Yj):

() T (Xi)Yj + T (Xi)Yj = �XiYj () T (Xi)

Xi
+
T (Yj)

Yj
= �:

Using the same argument as in the previous exercise, we generate the equations8><
>:
T (Xi) + �Xi = 0; X0 = XN+1 = 0;

T (Yj) + �Yj = 0; Y0 = YM+1 = 0;

� = ��� �:

The �rst two equations can be put into matrix form and will result in eigenvalue problems for the
well-studied matrix

Th = h�2 tridiag
�
1 �2 1

�
:

From this matrix we get the eigenvalues

�i =
4

h2
sin2(i�h=2); �j =

4

h2
sin2(j�h=2):

The eigenvalues �i;j for the original problem therefore become

�i;j = ��i � �j = � 4

h2
(sin2(i�h=2) + sin2(j�h=2)) � ��2(i2 + j2)

as expected.

5.14. Since L�x is symmetric, we use the fact

�2[L�x] = max
k
f�kg = � 8

h2
sin2(�h=2):

Here, we used the largest eigenvalue �1;1 from the previous exercise.

6 Partial Differential Equations II

6.1. Use the same strategy as in problem 5.1. Since this is the advection equation, we have to assume
periodic boundary conditions, i.e. u(a) = u(b) (we solve the equation over some interval [a; b]). Derive
jjujj22 w.r.t. time and use the equation ut = ux to get

@jjujj22
@t

=

Z b

a

@

@t
u2 dx = 2

Z b

a

utudx = 2

Z b

a

uxudx = 2 [u2]ba| {z }
=0

�2
Z b

a

uux dx:

As usual, we see that
R b
a
uxudx = � R b

a
uxudx = 0. Thus,

@jjujj22
@t

= 0 =) jju(t; �)jj2 = jju(0; �)jj2

for any t > 0. Put into words, the norm of the solution is preserved over time. By the same argument
as in 5.1 we conclude that the problem is well posed. The same is true in reverse time, since swapping

ux by �ux doesn't change the fact that
R b
a
uxudx = � R b

a
uxudx = 0 and the result is therefore

unchanged.
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Full solution: Let vt = vx for t > 0; x 2 [a; b] with v(0; x) = h(x) and periodic boundary conditions
such that

jjg � hjj22 < ";

where g(x) = u(0; x) for some " > 0. Then w(t; x) = u(t; x)� v(t; x) is also a solution, since

wt =
@

@t
(u� v) = ut � vt = ux � vx = wx:

The initial condition is w(0; x) = u(0; x)� v(0; x) = g(x)� h(x). From the above result we know that
the norm of the solution is the same as the norm of the initial condition, i.e.

jjw(t; �)jj2 = jjw(0; �)jj2 () jju(t; �)� v(t; �)jj2 = jjg � hjj2 < � = ":

Thus, we have shown that given a small change " > 0 to the initial condition we can always �nd a
� > 0 such that the solution is perturbed by something smaller than �. In other words, the solution
depends continuously on the initial data and the problem is well-posed.

6.2. Remember, in order for the recurrence relation un+1 = Aun to have a bounded (stable) solution, it
must be the case that �(A) � 1, where �(A) is the spectral radius of A. In other words, all eigenvalues
must have (squared) magnitude less than or equal to one. Also, from exercise 4.11a) we know
that the eigenvalues of S�x are

�[S�x] =
i

�x
cos(�x�k):

a) In this case A = I +�t � S�x. The eigenvalues are

�[A] = 1 + �t � �[S�x] = 1 + i � �t
�x

cos(�x�k):

We already see that the method is unstable. If you aren't convinced, here's why:

j�[A]j2 = 1 +
�t2

�x2
cos2(�x�k) > 1:

b) From the above it's not hard to see that this method will always be stable. It is because in this
case, we have

�[A] =
1

1 + �t � �[S�x] =
1

1 + i � �t
�x cos(�x�k)

and the magnitude of the denominator will be the same as for the matrix in the explicit method.
In other words,

j�[A]j2 = 1

1 + �t2

�x2 cos
2(�x�k)

� 1 () 1 +
�t2

�x2
cos2(�x�k) � 1;

which is what we found from the explicit method.

c) Here, we use the results from problem 5.5 to compute the eigenvalues.

�[A] =
1 + �t

2 � �[S�x]
1� �t

2 � �[S�x]
:

From the previous methods we know that both the numerator and denominator have the same
magnitude. Consequently, j�[A]j = 1 for any �t;�x > 0 and the method is always stable.
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6.3. Solving ut = ux in reverse time is the same as solving ut = �ux in forward time. Applying the methods
from the previous exercise on this problem will therefore result in the same recurrence relations with
the only di�erence being that S�x is replaced by �S�x. It's quite obvious that the stability properties
won't change because of this for any of the three methods above. For explicit Euler, the solution
will explode in both forward and reverse time, while for the implicit Euler the solution will decay in
both forward and reverse time. For the trapezoidal rule, however, we claim that the norm is always
preserved, i.e.

jjun+1jj2 = jjunjj2; un+1 = Aun; A =

�
I � �t

2
� S�x

��1
�
�
I +

�t

2
� S�x

�
:

The reason is that A is unitary in this case and for unitary matrices A we know (from matrix theory)
that jjAXjj2 = jjXjj2 for any vector X. To prove this, recall that a matrix A is unitary i� AHA = I.
Next, note that �

I � �t

2
� S�x

�H
= IH � �t

2
� SH�x = I +

�t

2
� S�x =: B;�

I +
�t

2
� S�x

�H
= IH +

�t

2
� SH�x = I � �t

2
� S�x =: C:

Moreover, the matrices B and C (and therefore also B�1 and C�1) commute, since

BC =

�
I +

�t

2
� S�x

��
I � �t

2
� S�x

�
= I � �t2

4
� S2

�x =

�
I � �t

2
� S�x

��
I +

�t

2
� S�x

�
= CB:

With these properties, together with the fact that (A�1)H = (AH)�1, we are ready to prove the main
result.

AHA =
�
C�1B

�H � �C�1B� = BH(CH)�1C�1B = CB�1C�1B = CC�1B�1B = I:

Now we are con�dent that jjun+1jj2 = jjunjj2 when we use the trapezoidal rule, which is very good
because the original equation behaves in the same way; jju(t; �)jj2 = jju(0; �)jj2. This is therefore the
most suitable method to use in this case.

6.4. a) The given expression is supposed to be applied to the equation _u = S�xu. With the linear test
equation _u = �u instead, we simply replace S�x with � and get the recurrence relation

un+1 = un�1 + 2�t�un

which has the characteristic equation

r2 = 1 + 2�t�r () r2 � 2�t�r � 1 = 0:

b) This follows directly from Vi�eta's theorem, which states that the product of the roots of a quadratic
polynomial is the constant term, which in this case is precisely �1.

c) Let r1; r2 be the roots of the characteristic polynomial. We know that r1r2 = �1 and taking
magnitude of both sides yields

jr1j � jr2j = 1:

Without loss of generality, it's obvious that if jr1j < 1 then

jr2j = 1

jr1j > 1;

which violates the root condition and the method therefore becomes unstable.
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d) As we've seen above, both roots must have unit magnitude in order to have stability. It is therefore
the case that

r1 = ei�; r2 = �e�i�:
Here, � 6= �=2, since in that case r1 = r2 = i is a double root, which violates the root condition.
Vi�eta's theorem also tells us that the sum of roots is the negative coe�cient in front of the r-term,
i.e.

r1 + r2 = ei� � e�i� = 2i sin � = 2�t� () �t� = i sin �

and sin � 2 (�1; 1) since � 6= �=2. Thus,

�t� = i!; ! 2 (�1; 1):

6.5. Diagonalize S�x as S�x = S�1�S. Then, by letting v = Su we get

_u = S�xu () _u = S�1�Su () S _u = �Su () _v = �v:

Denote vn =
�
v1n v2n � � � vNn

�T
. Applying the Leap-frog on the above equation will result in

vkn+1 = vkn�1 + 2�t � �k[S�x]vkn
for component k.

a) From the previous exercise we know that the condition for stability is �t� = i! for ! 2 (�1; 1).
In our case, �k[S�x] is given by the result in problem 4.11a) and therefore

�t�k[S�x] = i � �t
�x

cos(�x�k) =) �t

�x
� j cos(�x�k)j < 1

for stability. Consequently,

�t

�x
<

1

j cos(�x�k)j �
1

j cos(�x�)j � 1

for small �x. The CFL-condition is therefore �t � �x.

b) It's not clear what it means to \run the method in reverse". Assume that it means that we replace
the given recurrence relation with

vkn�1 = vkn+1 + 2�t � �k[S�x]vkn:

Then the characteristic equation now becomes

1 = r2 + 2�t � �k[S�x]r () r2 + 2�t � �k[S�x]r � 1 = 0:

The only di�erence from the regular case is the change of sign in the r-term. Vi�eta's theorem tells
us that (

r1 + r2 = �2�t � �k[S�x];
r1 � r2 = �1:

The second equation is the same as before, hence r1 = ei�; r2 = �e�i�. But from the �rst equation
we get

r1 + r2 = 2i sin � = �2�t � �k[S�x] () �t � �k[S�x] = i!; ! 2 (�1; 1);

i.e. the same result as before. In other words, the behaviour is the same when running in both forward
and reverse time.
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6.6. We get

lim
n!1

�
1 +

i!kt=�x

n

�n
= ei!kt=�x:

Since !k = cos(�x�k) (see problem 4.11a)), ei!kt=�x will always have unit magnitude. However, as
�x! 0 we get

lim
�x!0

ei!kt=�x = [� = !kt=�x] = lim
�!1

ei�;

which is a limit that does not exist. In practice of course, we are not actually working with a complex
exponential ei�, only an approximation with some �xed n. The magnitude is then����1 + i!kt=�x

n

����n =

�
1 +

!2
kt

2

n2�x2

�n=2
�
�
1 +

!2
kt

2

2n2�x2

�n
� 1 +

!2
kt

2

2n�x2
:

Here, we �rst used a Taylor expansion p
1 + x2 � 1 +

x2

2

for small x followed by only using the �rst two terms in the binomial expansion. We see that the
upper bound is always greater than one, but in order to keep the magnitude error bound at a certain
value

" =
!2
kt

2

2n�x2

one has to �x the value of

n ��x2 � !2
kt

2

2"
:

6.7. Use the shorthands u = u(t; x); ut = ut(t; x), etc. We use the Taylor expansion

u(t+�t; x) = u+�tut +
�t2

2
utt +O(�t3)

and want to replace the temporal derivatives with spacial ones.

ut + aux = 0 =)
(
utt + auxt = 0;

utx + auxx = 0;
=) utt + a � (�auxx) = 0 =)

(
ut = �aux;
utt = a2uxx:

Inserting this into the Taylor expansion yields

u(t+�t; x) = u� a�tux +
a2�t2

2
uxx +O(�t3)

Then, use the second order approximations

ux �
unj+1 � unj�1

2�x
;

uxx �
unj+1 � 2unj + unj�1

�x2

and insert into the expansion.

un+1
j = unj � a�t � u

n
j+1 � unj�1
2�x

+
a2�t2

2
� u

n
j+1 � 2unj + unj�1

�x2
:

Then, by letting � = �t=�x we get

un+1
j = unj �

a�

2
� (unj+1 � unj�1) +

a2�2

2
� (unj+1 � 2unj + unj�1)

=
a�

2
(a�� 1)unj+1 + (1� a2�2)unj +

a�

2
(a�+ 1)unj�1:

24



6.8. With periodic boundary conditions we will always get circulant matrices. In our case we will get the
matrices

unj+1 + unj�1
2

=) 1

2
� Circ(0; 1; : : : ; 1) = 1

2
�

0
BBBBBBB@

0 1 0 � � � 0 1
1 0 1 � � � 0 0
0 1 0 � � � 0 0
...

...
...

. . .
...

...
0 0 0 � � � 0 1
1 0 0 � � � 1 0

1
CCCCCCCA
;

a�t � u
n
j+1 � unj�1
2�x

=) a�t

2�x
� Circ(0; 1; : : : ;�1) = a�t

2�x
�

0
BBBBBBB@

0 1 0 � � � 0 �1
�1 0 1 � � � 0 0
0 �1 0 � � � 0 0
...

...
...

. . .
...

...
0 0 0 � � � 0 1
1 0 0 � � � �1 0

1
CCCCCCCA
:

Adding these matrices will result in another circulant matrix

A = Circ

�
0;
1

2
� a�t

2�x
; : : : ;

1

2
+

a�t

2�x

�
:

And for CFL = 1, we get
a�t

�x
= 1 =) A = Circ(0; : : : ; 1);

which is a permutation matrix and is therefore asymmetric. In other words, this matrix moves the
last component of a vector to the top while pushing down the other components.0

BBBBBBB@

0 0 0 � � � 0 1
1 0 0 � � � 0 0
0 1 0 � � � 0 0
...

...
...

. . .
...

...
0 0 0 � � � 0 0
0 0 0 � � � 1 0

1
CCCCCCCA

0
BBBBBBB@

u1
u2
...

uN�2
uN�1
uN

1
CCCCCCCA

=

0
BBBBBBB@

uN
u1
u2
...

uN�2
uN�1

1
CCCCCCCA
:

The characteristic polynomial is

det(A� �I) = jCirc(��; : : : ; 1)j = [Expand along �rst row]

= (�1)N+1 � 1 � j tridiag �0 1 ��� j+ (�1)2 � (��) � j tridiag �1 �� 0
� j

= [Upper & lower triangular matrices] = (�1)N+1 � 1N�1 � � � (��)N�1
= (�1)N (�N � 1):

The roots of this polynomial are �k = ei2�k=N , i.e. the N 'th roots of unity. Since all eigenvalues are
unique and have magnitude one, the method is stable. A faster way to determine stability would be
to check the root condition for the characteristic equation of the recurrence relation, which is

r = (r2 + 1)=2� a�t � (r2 � 1)=(2�x) =) r = (r2 + 1)=2� (r2 � 1)=2 = 1:

The only root is r = 1, which satis�es the root condition and the method is therefore stable. The
reason we want to run at CFL = 1 is because then the matrix A is unitary (columns orthogonal to
each other) and therefore preserves the norm of the solution when stepping in time. This is a key
property of the advection equation and a good method should replicate this behaviour.
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A Implementation of problem 4.1

Here is Erik Danielsson's implementation of problem 4.1 (click to go back) which further proves that
the presented method is not order one. In �gure 2 below, y1 is computed by expanding the Sturm-
Liouville operator

d

dx
(p(x)y0(x)) = p0(x)y0(x) + p(x)y00(x)

and then discretizing using standard derivative approximations. For y2, the method

d

dx
(p(x)y0(x))

����
x=xi

� pi�1=2yi�1 � (pi�1=2 + pi+1=2)yi + pi+1=2yi+1

h2

presented in the lecture notes is implemented instead and y3 is the method given in 4.1.

Figure 2: The three di�erent methods for the given problem p(x) = (1 � 0:8 sin2 x). We see that y1
and y2 agree with each other, while y3 produces a bogus plot.

The implementation was done in Julia and is only 30 lines.
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1 using Plots

2

3 # Numerical approximation of the differential operator

4 # A = d/dx (p(x) d/dx) where p(x) = 1 - 0.8sin(x)^2

5

6 # Expansion and discretisation:

7 # Ay = p’ y’ + p y’’

8 # then discretize normally

9 diff1(p, h, x) = (p(x + h) - p(x - h)) / 2h

10 diff2(p, h, x) = (p(x + h) - 2p(x) + p(x - h)) / h^2

11 diffcorr(p, y, h, x) = diff1(p, h, x) * diff1(y, h, x) + p(x) * diff2(y, h, x)

12

13 # Direct disretization of A according to lecture notes

14 diffnorm(p, y, h, x) = (p(x - h / 2) * y(x - h) - (p(x - h / 2) + p(x + h / 2)) * y(x)

+ p(x + h / 2) * y(x + h)) / h^2

15

16 # Method suggested in exercise

17 diffincorr(p, y, h, x) = (p(x - h) * y(x - h) - 2p(x) * y(x) + p(x + h) * y(x + h)) /

h^2

18

19 # Example problem

20 p(x) = 1 - 0.8 sin(x)^2

21 y(x) = exp(x)

22 N = 1000

23 h = 1 / (N + 1)

24 xgrid = range(0, pi , N + 2)

25

26 y1 = [diffcorr(p, y, h, x) for x in xgrid]

27 y2 = [diffnorm(p, y, h, x) for x in xgrid]

28 y3 = [diffincorr(p, y, h, x) for x in xgrid]

29

30 plot(xgrid , [y1 , y2 , y3], layout =3)
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