
Numerical analysis - Summary

databogdan

24 March, 2020

1

Contents

1 General Concepts and Taylor (L1) 3
1.1 Error of Approximation . 3
1.2 Convergence Order . 4
1.3 Taylor’s Theorem 1D . 4

2 Root Finding (L2, L3, L4) 6
2.1 Bisection Method . 6
2.2 Fixed Point Iteration (FPI) . 6
2.3 Newton Method 1D . 7
2.4 Secant Method . 8

3 Linear systems, eigenvalues (L5, L6, L7, L8, L9, L10, L11) 10
3.1 Vector and Matrix Norms . 10
3.2 Condition Number of a Matrix . 11
3.3 Eigenvalues and Eigenvectors . 12
3.4 Projection . 12
3.5 Newtons Method Rn, solving Ax = b iteratively 13
3.6 More Iterative Methods for Ax = b . 13
3.7 Gaussian elimination . 14
3.8 LU factorization . 15
3.9 QR Factorization . 15
3.10 Power Method . 15
3.11 Rayleigh Quotient Iteration . 16

4 Interpolation (L12, L13, L14, L15, L16, L17) 17
4.1 Least Square . 17
4.2 Polynomial Interpolation . 18
4.3 Vandermonde Method . 18
4.4 Lagrange Interpolation . 19
4.5 Chebyshev . 20
4.6 Cubic Splines . 20
4.7 Bezier Curves . 22

5 Fourier Transforms (L17, L18, L19) 24
5.1 Complex Arithmetic . 24
5.2 The Discrete Fourier Transform . 24
5.3 The Fast Fourier Transform . 26

6 Numerical Integration (L20, L21) 27
6.1 Newton-Cotes . 27
6.2 Composite Newton-Cotes . 29
6.3 Gaussian Quadratures . 30

7 Differential Equations (L22) 32
7.1 Ordinary Differential Equations (ODE) . 32
7.2 Euler’s Method . 32

8 Optional extra material 36
8.1 Horner’s Method . 36

2

1 General Concepts and Taylor (L1)

In math a few problems can be solved exactly. Most real life problems must be solved numer-
ically, i.e with an approximation and an error. These are typically Non-linear equations
or Differential equations.

”Numerical analysis is about constructing and analyzing quantitative methods for
the computation of solutions to mathematical problems.”

The main concerns of numerical analysis are:

1. Approximating the solution

2. Cost of the approximation

3. Error of the approximation

With cost we mean number of operations (NOO), such as addition, multiplication etc. Dif-
ferent factors in real life such as computing power, type of processor etc may also be needed
to taken into account, but this is math and therefore only NOO.

Because we get approximation, we are not interested in exact answers but instead approxi-
mations within a given tolerance. This tolerance is commonly our Stopping Criteria, i.e
stop iterating if E < TOL.

1.1 Error of Approximation

Absolute Error

Assume that the approximation p̂(x) of the real solution f(x). Then the absolute error is
given by

E = |f(x)− p̂(x)| (1)

Relative Error

Another type of error is the relative error which is a percentage given by

E =
|f(x)− p̂(x)|
| ˆp(x)|

(2)

Truncation Error

A truncation error is for example only keeping Taylor terms up to a certain degree, e.g

ex ≈ 1 + x (3)

Round-off Error

Computers can not represent all real numbers exactly because they are discrete. This leads
to an inevitable round off error, e.g 2.1234567 may be rounded up to 2.1 in a computer if
only few bits can represent the value.

3

Forward Error

Given by |r−xn|, also called the horizontal distance since it measures distance in x-direction.

Backward Error

Given by |f(xn)|, also called the vertical distance since it measures distance in y-direction.

1.2 Convergence Order

How fast a given algorithm, method, scheme converges to the correct value is important.

Definition:

Let en = |r − xn| be the error of an iterative method. If

lim
n→∞

en+1

ekn
= S < 1 (4)

then the method is said to converge with order k and rate S

Different orders and rates

If the order k = 1 then we have the following rates:

1. if S → 0 - super linear convergence

2. if S → 1 - sub linear convergence

3. if S = 1 - logarithmic convergence

4. if S > 1 - diverge

For orders k = 2, 3, i.e quadratic- and cubic convergence, or higher then the method
converges with rate S if and only if 0 < S <∞. To be clear, this means that if S diverges to
∞ then the method also diverges for that convergence order.

1.3 Taylor’s Theorem 1D

Let f be k+ 1 times continuously differentiable function on the interval between x and x0 for
given real numbers x and x0. Then there exist a number ζ in the interval such that

f(x) = P (x) +R(x) (5)

where the polynomial P (x) (approximation term) of degree k is given by,

f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2 + ...+

fk(x0)

k!
(x− x0)k (6)

and the remainder R(x) (error term) of degree k + 1 is given by

fk+1(ζ)

(k + 1)!
(x− x0)k+1 (7)

4

Taylor’s Theorem 2-D Example

Let f(x, y) have 3 continuous partial derivatives on the interval between (x, y) and (x0, y0)
for given real points (x, y) and (x0, y0). Then there exist a point (α, β) in the interval such
that

f(x, y) = P (x, y) +R(x, y) (8)

where the polynomial P (x, y) (approximation term) is given by,

f(x0, y0) + f ′x(x0, y0)(x− x0) + f ′y(x0, y0)(y − y0)+
1

2!
[f ′′xx(x0, y0)(x− x0)2 + 2f ′′xy(x0, y0)(x− x0)(y − y0) + f ′′yy(x0, y0)(y − y0)2]

and the remainder R(x, y) (error term) is given by

1

3!
[f ′′′xxx(α, β)(x− x0)3 + 3f ′′′xxy(α, β)(x− x0)2(y − y0)+ (9)

3f ′′′xyy(α, β)(x− x0)(y − y0)2 + f ′′′yyy(α, β)(y − y0)3] (10)

5

2 Root Finding (L2, L3, L4)

2.1 Bisection Method

xn+1 =
xn + xn−1

2
(11)

• What - Solves f(x) = 0

• Requires - Continuous f(x), two starting points [a0, b0]

• How - Divide interval until number of iterations or tolerance have been reached

• Advantages - Simple, always converge, precise formulation of error

• Disadvantages - Slow convergence, may discard early good approximation

Bisection Theorem:

Suppose the following

1. f is continuous

2. f(r) = 0 for some r ∈ [a, b]

3. f(a)f(b) < 0, i.e opposite signs

Then the sequence produced by the Bisection Method converges to the root r of f

lim
n→∞

xn = r (12)

and the absolute error is given by

|r − xn| ≤
bn − an

2
= ... =

b0 − a0
2n+1

(13)

2.2 Fixed Point Iteration (FPI)

xn+1 = g(xn) (14)

6

• What - Solves g(x) = x

• Requires - Continuous g(x), one starting points x0

• How - Iterate from starting point

• Advantages - Simple

• Disadvantages - Does not always converge, rate of convergence depends on g′(x)

Contractive:

A continuous g is contractive on an interval [a, b] if

|g′(x)| < 1, for all x ∈ (a, b) (15)

FPI Theorem:

The function g : [a, b]→ R has a unique fixed points if

1. g : [a, b]→ [a, b] (existence)

2. g is contractive on (a, b)

Then any initial x0 ∈ [a, b] will converge to the root. The absolute error is then given by

|xn − r| ≤
cn

1− c
|x1 − x0| (16)

where c = max|g′(x)| < 1 on the interval.

2.3 Newton Method 1D

xn+1 = xn −
f (xn)

f ′(xn)
(17)

7

For this to work, our initial x0 needs to be close to the root we are trying to approximate.

• What - Solves f(x) = 0 (linear and nonlinear f)

• Requires - Continuous f(x), one starting points x0

• How - Iterate from starting point by following the tangent line of f(xn) down to find
the next xn+1 value

• Advantages - Fast (can be quadratic near root), error estimate and number of itera-
tions given a tolerance can be calculated

• Disadvantages - Does not always converge (depends on starting point and f), costly
to calculate f ′(x), problems if f ′(x) = 0

The convergence rate of Newton near a root can be found by Taylor expanding f(x) with the
second derivative as error term. The result is quadratic convergence

lim
n→∞

en+1

e2n
= | − f ′′(ζ)

2f ′(xn)
| ≈ | f

′′(r)

2f ′(r)
| (18)

Assuming that f ′(xn) 6= 0 for all xn and f ′′(r) <∞.

2.4 Secant Method

xn+1 = xn − f (xn)
xn − xn−1

f (xn)− f (xn−1)
(19)

• What - Solves f(x) = 0 (linear and nonlinear f)

• Requires - Continuous f(x), two starting points x0, x1

• How - Iterate from starting points by following the secant of f(xn) and f(xn−1) down
to find the next xn+1 value

• Advantages - Not too difficult to implement, no need to calculate derivatives, faster
convergence than the Bisection Method

8

• Disadvantages - Does not always converge, costly function evaluations, may be slower
than the Newton Method

The convergence rate of Secant Method can be shown to be super linear.

lim
n→∞

en+1

ekn
= S <∞, where k =

1 +
√

5

2
≈ 1.62 (20)

9

3 Linear systems, eigenvalues (L5, L6, L7, L8, L9, L10,

L11)

This chapter will cover methods to solve Ax = b. These types of linear systems are found
everywhere. If the equations describing a system is hard, i.e non-linear, we can always simplify
with Taylor expansion. Keeping the first order terms for our approximation and the quadratic
terms as error. After the Taylor expansion, we are back to a system that can be described as
Ax = b.

Matrix Algebra

3.1 Vector and Matrix Norms

A vector or matrix norm, denoted || · ||, is a way to define distance in a space. The common
used norm i Euclidean, but there exists more. Mathematically a vector or matrix norm is a
real valued function which takes vectors or matrices as inputs and outputs a scalar.

Any given vector norm have these properties:

1. ||x|| ≥ 0 for all x ∈ Rn

2. ||x|| = 0 if and only if x = ~0

3. ||kx|| = |k| · ||x|| for all k ∈ R and x ∈ Rn

4. ||x+ y|| ≤ ||x||+ ||y|| for all x, y ∈ Rn

Similarly a matrix norm have these properties:

1. ||A|| ≥ 0 for all A : N ×M

2. ||A|| = 0 if and only if A = 0

3. ||kA|| = |k| · ||A|| for all k ∈ R

4. ||A+B|| ≤ ||A||+ ||B||

5. ||AB|| ≤ ||A|| · ||B||

l1-norm

For a column vector, n× 1 the norm is defined as

||x||1 =
n∑
i=1

|xi| (21)

For a matrix A, r × c this norm is defined as

||A||1 = max
1≤j≤c

r∑
i=1

|aij| (22)

10

l2-norm

Also know as the Euclidean and is the typical length of a row or column vector we are use
too.

||x||2 =

√√√√ n∑
i=1

x2i (23)

Notice that this equation is only defined for row or column vectors.

l∞-norm

For a column vector, n× 1 the norm is defined as

||x||∞ = max
1≤i≤n

|xi| (24)

For a matrix A, r × c this norm is defined as

||A||∞ = max
1≤i≤r

c∑
j=1

|aij| (25)

Spectral Radius Definition:

Let A be a n× n matrix with complex or real elements with eigenvalues λ1, λ2, . . . , λn. Then
the spectral radius is defined as

ρ(A) = max
1≤i≤n

|λi| (26)

Theorem:

Suppose that A is an n× n matrix. Then

√
ρ(ATA) = ||A||2 (27)

ρ(A) ≤ ||A|| for any matrix norm (28)

1

min |λ|
= ||A−1||2 for A symmetric (29)

3.2 Condition Number of a Matrix

A condition number of a matrix measures how sensitive the answer is to small changes in the
input data and to round-off errors made during the solution process.

This is important, as it informs us on how much we should trust our approximations. A large
condition number is bad for our approximation.

Definition:

k(A) = ||A|| · ||A−1|| (30)

11

where 1 ≤ k(A) ≤ ∞. If A is symmetric, we have

k(A) =
max |λ|
min |λ|

(31)

Practical Understanding of k(A):

Suppose we have a computer which rounds numbers to 10−15, i.e 15 decimals. Suppose that
the condition number of your matrix A is 1010. The condition number tells you that out of
the 15 decimals, you can only trust 5 in your answer.

3.3 Eigenvalues and Eigenvectors

For a square matrix A, n× n, we define eigenvalues, λ, and eigenvectors, x, as follows:

Ax = λx (32)

Theorem:

Let the eigenvalues of the square matrix A be λ1, λ2, . . . , λn. Then:

1. The eigenvalues of the inverse matrix A−1 are λ−11 , λ−12 , . . . , λ−1n given that A−1 exists.
The eigenvectors are the same

2. The eigenvalues of the shifted matrix A−sI are λ1−s, λ2−s, . . . , λn−s. The eigenvectors
are the same

3.4 Projection

Given two vectors u1, u2 we can find the orthogonal projections u′2 of u2 onto u1 by the
following formula:

u′2 =
u2 · u1
||u1||2

u1 (33)

And to find the vector from u′2 tip to the tip of u we simply take u2 − u′2. We have now for
vectors that are orthogonal that we also can normalize.

12

Gram-Schmidt Process

The goal of this method is to othonormalize a set of given vector. This is done with repeated
uses of the projection formula. Given the vectors u1, u2, u3, . . . , uk we do the following:

v1 = u1 (34)

v2 = u2 −
u2 · v1
||v1||2

v1 (35)

v3 = u3 −
u3 · v2
||v2||2

v2 −
u3 · v1
||v1||2

v1 (36)

... (37)

Finally all orthogonal vectors are normalized qj =
vj
||vj || . The cost is O(nk2) where n is the

dimension of the vectors and k is the number of vectors.

3.5 Newtons Method Rn, solving Ax = b iteratively

xn+1 = xn −DF−1(xn)F (xn) (38)
The method is an iterative method giving an approximation. In the equation DF is the
Jacobian Matrix.

δf1
δx1

δf1
δx2

· · · δf1
δxn

δf2
δx1

δf2
δx2

· · · δf2
δxn

...
. . .

...
δfn
δx1

δfn
δx2

· · · δfn
δxn

 (39)

There are some problems with the Jacobian matrix

1. It might be hard to calculate or even impossible. Solution to this is to approximate the
Jacobian

2. We always avoid calculating the inverse by rewriting it Y = DF−1 ⇐⇒ DF · Y = F
and solve for Y

The convergence rate of the multidimensional Newton Method is also quadratic near a root.
This is also shown by Taylor expanding near the root as in the 1D case.

3.6 More Iterative Methods for Ax = b

Let A = L + D + U , where A is the matrix, L the lower triangular elements, D the di-
agonal element and U the upper triangular elements. Then a fixed point iteration can be
performed

xn+1 = Gxn + C (40)

13

where

G = I −Q−1A (41)

C = Q−1b (42)

We still need to know what Q is. How we choose the Q matrix depends on which method we
want to use. We have the following methods:

1. Jacobi - Q = D

2. Richardson - Q = I

3. Gauss-Seidel - Q = (D + L)

Iterative Theorem 1:

If A is strictly diagonally dominant, i.e

|akk| >
n∑
j=1

|akj| , where j 6= k (43)

for all rows, then all the iterative methods converge for any initial choice of x0

Iterative Theorem 2:

All the iterative methods converge for any initial choice of x0 if and only if

ρ(G) < 1 (44)

where ρ(G) is the spectral radius.

General information about the iterative methods:

• Gauss-Seidel is faster than Jacobi

• Gauss-Seidel and Jacobi have a cost of O(n2) operations per iteration

• One iterative method may converge to solution while the others may not. Check which
converge with the spectral radius!

Gaussian elimination may be better than iteration depending on size of system. If

ln tol

ln ρ(G)
<
n

3
(45)

then iterative methods are better than Gaussian elimination (n is the size of A)

3.7 Gaussian elimination

The normal method when faced with a linear system Ax = b and gives an exact solution.
You simply perform the elimination and a back substitution.

The cost of Gaussian elimination is

2n3

3
+
n2

2
− 7n

6
(46)

and for back substitution is n2.

14

3.8 LU factorization

Solves Ax = b by factorization of A. The power of this method is solving the same system
multiple times for different bi.

PA = LU =⇒ Ax = b ⇐⇒ LUx = Pb
(47)

Where L is a lower triangular matrix with ones in the diagonal, U is a upper triangular matrix
and P is the permutation matrix. A permutation matrix keeps track of row changes while
performing Gaussian elimination on the original A matrix. This needs to be done to because of
a phenomenon called swamping. To prevent swamping we check that each partial pivoting
element are the largest in it’s column, i.e |ap1| ≥ |ai1|.

The cost of LU factorization is approximately the same as Gaussian

≈ 2n3

3
+ 2n2 (48)

However, this cost is for finding L, U , P and back substitution. After the matrices are found,
you can solve the same system for a different bi for the cost of 2n2 as L and U are triangular
and therefore only needs a back substitution.

3.9 QR Factorization

We factorise our matrix to A = QR where Q is orthonormal and R is an upper triangular
matrix. This is done by the following method:

1. Create Q matrix out of all vectors qj from Gram-Schimdt with A’s column vectors as
input

2. R is then simply QTA

We like this method because orthonormal =⇒ Q−1 = QT . To solve Ax = b we do

Ax = b ⇐⇒ QRx = b ⇐⇒ Rx = QT b (49)

Because this is upper triangular this is easy to solve. If no solution exists we get the best
least square approximation of the solution.

3.10 Power Method

Eigenvalues are extremely important and this method finds the greatest absolute eigenvalue
for a given matrix A by iterating this to find the eigenvector:

xk+1 =
Axk
||Axk||

(50)

15

After finding the eigenvector for the largest eigenvalue, we retrieve the eigenvalue with the
Rayleigh quotient:

λ =
xTAx

xTx
(51)

Assuming A : n × n with eigenvalues λ1, λ2, . . . , λn satisfying |λ1| > |λ2| ≥ · · · ≥ |λn| the
Power Method converges rate of convergence is given by

|λk+1|
|λk|

(52)

and is linear. This for almost any initial vector.

3.11 Rayleigh Quotient Iteration

To find all eigenvalues given a matrix A we can use the Power Method but in iterations.
Assume the matrix is of size n × n, then we have n eigenvalues. To find all we simply run
the Power Method to find the largest eigenvalue. Now that we know this value, we can shift
it out of the matrix, i.e Anew = A − λI. Applying the Power Method to Anew will now
give back the second largest eigenvalue of the original matrix A. Repeating this will give all
eigenvalues.

The convergence is quadratic but can be cubic if A symmetric.

To run the algorithm we need an initial vector x0 and a square matrix A.

for j = 1, 2, 3, . . . do
uj−1 =

xj−1

||xj−1|| % normalize

λj−1 = uTj−1Auj−1 % Rayleigh
Solve(A− λj−1I)xj = uj−1 % Inverse Power Method (could just use Power Method?)

end

16

4 Interpolation (L12, L13, L14, L15, L16, L17)

In real life we do not have continuous functions. Instead, we use data sampled at certain times.
These data points (x0, y0, z0, . . .), (x1, y1, z1 . . .), . . . can be of several dimensions. We use this
to represent a discrete function. From these discrete points, we can interpolate a continuous
function, i.e our model consisting of elementary functions. Another motivation is that real
life measurements come with errors and noise. Many times the given data over determine
the problem, i.e more equations than variables, making a solution non-existent.

4.1 Least Square

As in statistics when we try to approximate parameters for a distribution, the Least Squares
method tries to find the solution which minimizes the error from the ”real value”. The
underlying model can both be linear and non-linear. The general idea is that after gathering
data points you assume a model and insert the measured points into the model:

y0 = f(x0) (53)

y1 = f(x1) (54)

y2 = f(x2) (55)

... (56)

⇐⇒ y = Ac (57)

We now want a solution with the smallest possible squared error

R2 = d21 + d22 + d21 + · · ·+ d2n (58)

where n is the number of data points, R is the residual and dj is the Euclidean distance from
model to the measured value.

If linear we have the model y = a+ bx

and therefore

dj = (yj − (a+ bxj)) (59)

We are interested in the Least Square which minimizes R which depends on the parameters
a, b. This is achieved by

1. Take the derivative of R and set it to zero

17

2. Solve for the parameters a and b

This can also be done by using the QR-method above and should give same solution.

For a non-linear model, for example exponential model y = C1e
kx, we do the same procedure

but now f(x) is C1e
kx instead of a+bx as in the linear case. Inserting the data points we get a

system Ac = y which we can solve using the QR-method to get the least square approximation.
We are once again here trying to find the coefficients of our model.

4.2 Polynomial Interpolation

Given data points a natural model for us to use is a polynomial. These are easy to use,
compute derivatives, primitives etc.

Interpolating Polynomial Definition:

A polynomial p ∈ Pn interpolates the points (xi, yi) for i = 0, . . . , n if

p(xk) = yk, ∀k ∈ {0, . . . , n} (60)

Werestrass Approximation Theorem:

Suppose f(x) is a continuous function on [a, b]. Then ∀ε > 0 there exists polynomial p(x)
defined on [a, b] such that

|f(x)− p(x)| ≤ ε, ∀x[a, b] (61)

In simple English - we can find a polynomial as close as we like to any given function
f(x).

4.3 Vandermonde Method

This is the easiest interpolating approach. Given n + 1 distinct points use an n degree
polynomial pn(x) = a0+a1x+a2x

2+· · ·+anxn and evaluate it for each data point (xi, yi).

y0 = a0 + a1x0 + a2x
2
0 + · · ·+ anx

n
0 (62)

y1 = a0 + a1x1 + a2x
2
1 + · · ·+ anx

n
1 (63)

... (64)

yn = a0 + a1xn + a2x
2
n + · · ·+ anx

n
n (65)

This gives us a linear system V a = y

18

1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

. . .
...

1 xn x2n · · · xnn

a0
a1
...
an

 =

y0
y1
...
yn

 (66)

Some properties of the Vandermonde matrix V are:

1. If all ai are distinct then det(V) 6= 0

2. A square Vandermonde matrix is invertible if and only if the ai are distinct

The advantage of this method is the simplicity. However, the disadvantage is that the
Vandermonde matrix will have a large condition number.

4.4 Lagrange Interpolation

Given data points (xi, yi) the goal of this method is interpolate these n + 1 points with a
polynomial of degree n:

pn(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n (67)

You find the Lagrange polynomial by doing the following. Let

pn(x) =
n∑
i=0

yiLi(x), where (68)

Li(x) =
n∏

j=0,i 6=j

x− xj
xi − xj

⇐⇒ (69)

(written out ...)
(x− x0)(x− x1) . . . (x− xn)

(xi − x0)(xi − x1) . . . (xi − xn)
(70)

The error estimate of Lagrange interpolation can be proven to be

|f(x)− pn(x)| < f (n+1)(ζ)

(n+ 1)!

n∏
i=0

(x− xi) (71)

The advantages of Lagrange are:

• Error estimate is provided

• Does not restrict nodes to be evenly spaced at x

The disadvantages of Lagrange are:

• The error is very difficult to know in advance since normally we do not know the actual
function f(x)

• We must recompute everything from the beginning if an extra data point is added to
existing data set

19

4.5 Chebyshev

If Lagrange is used with equally spaced data points we run into Runge’s Phenomenon.
The phenomenon is that the error increase drastically at the end points.

To remedy this, and minimize the error estimate of Lagrange we instead pick points that are
not equally spaced, but given by the roots of Chebyshev polynomials. The Chebyshev
polynomials are given by

Tn(x) = cos (n arccos (x)), − 1 ≤ x ≤ 1 (72)

or the recursive formula

Tn+1 = 2x · Tn(x)− Tn−1(x) , n = 1, 2 . . . (73)

T0 = 1 (74)

T1 = x (75)

The xi are the roots of the Chebyshev polynomials on the interval [−1, 1]. To transform the
new points to any interval we use

x̂i =
1

2
[(b− a)xi + a+ b] (76)

where x̂i is the new x-point of the interval [a, b].

4.6 Cubic Splines

Having a n-degree polynomial for n + 1 data points is over kill and sometimes bad. An-
other idea is to split all the data points into intervals and use several interconnecting cubic
polynomials to interpolate.

Cubic Spline Definition: The polynomial S ∈ C2[a, b] is called a cubic spline on [a, b] if it
is a third degree polynomial in each interval between the given nodes (xj, yj) for j = 0, . . . , n,
i.e

Si(x) = ai(x− xi)3 + bi(x− xi)2+ci(x− xi) + di (77)

for i = 0, 1, . . . , n− 1 (78)

20

with the following properties:

1. Si(xi) = yi for i = 0, . . . , n− 1

2. Si−1(xi) = yi for i = 1, . . . , n

3. S ′i−1(xi) = S ′i(xi) for i = 1, . . . , n− 1

4. S ′′i−1(xi) = S ′′i (xi) for i = 1, . . . , n− 1

The properties gives us 4n − 2 conditions. There are 4n parameters ai, bi, ci, di. We need
two more conditions to solve this system and therefore we make assumptions about the end
points:

• Natural Spline - S ′′0 (x0) = 0 and S ′′n−1(xn) = 0

• Clamped Spline - S ′0(x0) = v1 and S ′n−1(xn) = v2

• Curvature Adjusted Spline - S ′′0 (x0) = v1 and S ′′n−1(xn) = v2

• Not-a-Knot Spline - S ′′′0 (x1) = S ′′′1 (x1) and S ′′′n−2(xn−1) = S ′′′n−1(xn−1)

The error for a Natural Cubic Spline is given by

|S(x)− f(x)| ≤ h4

180
|f (5)(ζ)| (79)

where h is the equal distance between points.

To find the coefficients ai, bi, ci, di we first define a new variable σi = S ′′i (xi) and σn =
S ′′n−1(xn). From this variable we can describe all other:

ai =
σi+1 − σi

6h
(80)

bi =
σi
2

(81)

ci = −h2σi + σi+1

6
+
yi+1 − yi

h
(82)

di = yi (83)

We still need do not know our σi. However these can be find using

σi−1 + 4σi + σi+1 =
6

h2
(yi−1 − 2yi + yi+1) (84)

The equation above forms the following system

4 1 0 · · · 0
1 4 1 · · · 0
0 1 4 · · · 0
...

. . .
...

0 · · · 4 1 0
0 · · · 1 4 1
0 · · · 0 1 4

σ1
σ2
...
...
...

σn−1

=

6

h2

y0 − 2y1 + y2 − σ0
y0 − 2y1 + y2

...

...

...
yn−2 − 2yn−1 + yn − σn

(85)

21

This a Ax = b system which is always solvable because A is diagonally dominant. To solve
this system, the cost is O(k2n) where k is the number of diagonals, in our case above k = 3,
and n is the dimension of A.

4.7 Bezier Curves

Bezier curves are used widely in computer graphics. Instead of focusing on interpolation we
are now interested in smoothness and functionality.

Bezier Curve Definition:

Given a set of points {Pi = (xi, yi)}, i = 0, 1, . . . , n then the following is a parametric Bezier
curve of degree n:

P (t) =(x(t), y(t)) =
n∑
i=0

PiB
n
i (t) , where explicitly (86)

x(t) =xoB
n
o (t) + x1B

n
1 (t) + · · ·+ xnB

n
n(t) (87)

y(t) =yoB
n
o (t) + y1B

n
1 (t) + · · ·+ ynB

n
n(t) (88)

where t ∈ [0, 1] (89)

The Bn
i (t) are the so called Bernstein Polynomials defined as

Bn
i (t) =

(
n

i

)
(1− t)n−i · ti (90)

A short example for a third degree Bezier Curve. We need 4 points for a curve of degree
3, i.e (x0, y0), (x1, y1), . . . , (x3, y3). The first and last points are called end points and the
middle points are called control points. Properties of this curve is

1. P (t) is continuous and has derivatives of all orders

2. P (0) = P0 and P (1) = P3 lie on the curve i.e the end points are interpolated

3. The curve is always tangent to P1 − P0 and P3 − P2

You can create Composite Bezier Curves from using repeated third degree Bezier Curves.
When connecting these curves, we ensure that they are continuous but not necessarily smooth.

22

To get the derivatives to agree we need to pick the middle points next to the shared end points
on a line.

The de Casteljau Algorithm:

To compute a point t = t0, on the Bezier Curve, B(t), with control points P0, P1, . . . , Pn:

1. Define P
(0)
i = Pi for i = 0, 1, . . . , n

2. Execute

for j = 1:n do
for i = 0:n-j do

P j
i = P j−1

i (1− t0) + P j−1
i+1 · t0

end

end

3. B(t0) = P n
0

23

5 Fourier Transforms (L17, L18, L19)

The Fourier transforms of interest is the Discrete Fourier Transform (DFT) and the
Fast Fourier Transform (FFT). These remarkable transforms have endless applications
and have been crucial in several fields, e.g. digital communication. The transforms rely on
complex numbers so we start with a short review.

5.1 Complex Arithmetic

A number is complex if it contains the imaginary number i =
√
−1 and a complex number is

further determined by it’s real and imaginary parts z = a + ib. A complex number can also
be represented on polar from

z = a+ ib ⇐⇒ (91)

reiθ ,where (92)

θ = arctan
b

a
(93)

eiθ = cos θ + i sin θ (94)

r =
√
a2 + b2 (95)

A complex conjugate z̄ = a− ib is defined as flipping the sign of the imaginary part.

Roots of Unity

An nth root of unity, n ∈ N+, is a number z satisfying the equation zn = 1. The nth roots
of unity are given

z = e
2πk
n
i, for k = 0, 1, . . . , n− 1 (96)

Primitive Root of Unity:

An nth root of unity is primitive if zk 6= 1 for k = 1, 2, . . . , n− 1.

Important properties of primitive nth roots of unity are:

Let w = e−
2πl
n
i, where l < n

1. 1 + wk + w2k + · · ·+ w(n−1)k = 0 for 1 ≤ k ≤ n− 1

2. 1 + wn + w2n + · · ·+ w(n−1)n = n

3. w−1 = wn−1

4. If n is even, w
n
2 = 1

5.2 The Discrete Fourier Transform

In this transform we have as input evenly spaced data points (ti, xi). From these inputs we
try to find the modes/frequencies for the sinus, cosinus waves that can describe the input
signal as a sum of these waves. The transform is given by

24

yk =
1√
n

n−1∑
j=0

xjw
jk , for k = 0, 1, . . . , n− 1 (97)

w = e−
2π
n
i (98)

or as a system of Fx = y where F is the Fourier Matrix

1√
n

w0 w0 w0 · · · w0

w0 w1 w2 · · · wn−1

w0 w2 w4 · · · w2(n−1)

...
. . .

...
w0 wn−1 w2(n−1) · · · w(n−1)(n−1)

x0
x1
...

xn−1

 =

y0
y1
...

yn−1

 (99)

The Fourier Matrix is both orthonormal and symmetric. Hence the inverse is given by
the conjugate transpose of F

F−1 = F̄ T (100)

Interpolating with DFT

Given data points x0, x1, . . . , xn−1 occurring at evenly spaced points on the interval [c, d]

denoted by tj = c+ j (d−c)
n

for j = 0, 1, . . . , n− 1. Then

P (t) =
1√
n

n−1∑
k=0

(ak cos
2πk(t− c)
d− c

− bk sin
2πk(t− c)
d− c

) (101)

where P (tj) = xj, i.e interpolating, and Fxj = aj + ibj = yj. This can be simplified further
to

P (t) =
a0√
n

+
2√
n

n
2
−1∑

k=1

(ak cos
2πk(t− c)
d− c

− bk sin
2πk(t− c)
d− c

) +
an/2√
n

cos
nπ(t− c)
d− c

(102)

Here we assume n is even. If n is not even you can still use this formula as the effect is
negligible.

A small trick you can do to avoid calculating sinus and cosinus functions is for x0, x1, . . . , xn−1
data points assume that the modes yn, yn+1, . . . i.e higher nodes than you can calculate are
all equal to zero. Then when you inverse transform with F̄ T · y = x we get more data points
out. These points are on the original interpolating curve. This can be seen as extrapolating
in the frequency plane.

25

Compression with DFT

You do not need to use all the nodes yj in the polynomial P (t). Leaving out some of the
modes, m < n, leads to the best Least Square Approximation and therefore compressing
the signal to only it’s crucial frequencies.

Plq(t) =
a0√
n

+
2√
n

m
2
−1∑

k=1

(ak cos
2πk(t− c)
d− c

− bk sin
2πk(t− c)
d− c

) +
am/2√
n

cos
nπ(t− c)
d− c

(103)

Filtering with DFT

Similar to compression, we can choose which modes we want in our resulting signal. In real
life, a signal often have high frequency noise. This can be filtered out by only taking the
first modes which is equivalent to the lower frequencies. Note! We can also filter our lower
frequencies and keep the higher, or do band of frequencies. The sky is the limit.

5.3 The Fast Fourier Transform

FFT is built upon the principal of divide and conquer. Instead of computing the modes yk
of a signal of size N at a cost of O(N2) we compute modes of 2 signals of size N/2 at a cost
2N

2

4
= N2/2 which is cheaper. If N is a power of 2, e.g N = 2q, you can repeat this process

q times, each time reducing a factor of 2 in cost. The signals will then have length N
2q

= 1

and the cost is N2

2q
= N2

N
= N and we do this q times. The total cost of FFT will then be

qN = N log2N .

In a strict proof you show that the recurrence relation can be described as

T (N) = 2 ∗ T (N/2) +N. (104)

This gives us O(N) at each level and we have log2(N) = q levels.

26

6 Numerical Integration (L20, L21)

Normally we cannot calculate an integration and therefore we approximate it numerically
with a sum:

∫ b

a

f(x) dx ≈
n∑
k=0

wk f(xk) (105)

where wk is the a weight function and f(xk) is a function evaluation. There are many formulas
that do this but we are mainly interested in

• Newton-Cotes

• Composite Newton-Cotes

• Gaussian Quadrature

Algebraic Degree of Accuracy (ADA)

The algebraic degree of accuracy of a quadrature formula is given by the power of the poly-
nomial pn(x) for which the quadrature is exact, i.e no error. This is also sometimes called
degree of precision.

This measurement only works for polynomials and is of interest as we normally do not know
f(x) and approximate it with polynomials.

6.1 Newton-Cotes

This is the simplest of the methods. Given a number of data points we try to approximate
the area under them. The main idea is to first approximate f(x) given the data points and
then estimate the area. To estimate f(x) we can use interpolating methods such as Lagrange,
DFT, Cubic Spline etc. To find the error of our approximation we Taylor expand and see
that our equation, e.g for the Trapezoid rule (2 points) we have

∫ x2

x1

f(x) dx =

∫ x2

x1

p(x) dx+

∫ x2

x1

e(x) dx (106)∫ x2

x1

e(x) dx =
1

2
f ′′(ζ)

∫ x2

x1

(x− x0)(x− x1) dx (107)

This can be generalized to more points. If a integration formula (quadrature) includes end
points of interval then it is called a closed Newton-Cotes Quadrature and other wise open
Newton-Cotes Quadrature.

ADA of Newton-Cotes Theorem:

Suppose the following quadrature for n+ 1 points∫ b

a

f(x) dx ≈
n∑
k=0

wk f(xk) (108)

27

Then the formulas are exact up to polynomials of degree n + 1 if n is even or exact up to
polynomials of degree n if n is odd.

The commonly used formulas are listed below. Assume n is derived from data points x0, . . . , xn.

Midpoint

The input is one point x0 and h is (x1 − x−1)/2∫ x1

x−1

f(x) dx = 2hf(x0) +
h3

3
f ′′(ζ) (109)

The ADA of midpoint is 1.

Trapezoidal

The input is two points x0, x1 and h is (x1 − x0)∫ x1

x0

f(x) dx =
h

2
[f(x0) + f(x1)]−

h3

12
f ′′(ζ) (110)

The ADA of midpoint is 1.

Simpsons’s

The input is three points x0, x1, x2 and h is the equidistant between the points, e.g (x1 −
x0)

28

∫ x2

x0

f(x) dx =
h

3
[f(x0) + 4f(x1) + f(x2)]−

h5

90
f (4)(ζ) (111)

The ADA of midpoint is 3.

Simpsons’s 3/8 Rule

The input is four points x0, x1, x2, x3 and h is the equidistant between the points, e.g (x1 −
x0) ∫ x3

x0

f(x) dx =
3h

8
[f(x0) + 3f(x1) + 3f(x2) + f(x3)]−

3h5

80
f (4)(ζ) (112)

The ADA of midpoint is 3.

6.2 Composite Newton-Cotes

The Newton-Cotes formulas are good as long as the interval in not wide. If the interval is
wide, the simplistic nature of the formulas such as assuming a line does not differ much from
the real f(x) leads to big errors. Therefore, if we split up the interval and use composites of
the simplistic formulas, we get good accuracy.

Composite Midpoint Rule

Suppose f ∈ C2[a, b]. Then the composite midpoint rule for, a = x0, x1, . . . , xn = b, is given
by

∫ b

a

f(x) dx = 2h

n/2∑
j=0

f(x2j)−
(b− a)h2

6
f ′′(ζ) (113)

where h = b−a
n+2

, xj = a+ (j + 1)h for j = −1, 0, . . . , n, n+ 1 and ζ ∈ (a, b).

Composite Trapezoidal Rule

Suppose f ∈ C2[a, b]. Then the composite trapezoidal rule for n+1 points, a = x0, x1, . . . , xn =
b, is given by

∫ b

a

f(x) dx =
h

2
[f(a) + f(b) + 2

n−1∑
j=1

f(xj)]−
(b− a)h2

12
f ′′(ζ) (114)

where h = b−a
n

, xj = a+ jh for j = 0, . . . , n and ζ ∈ (a, b).

Composite Simpson’s Rule

Suppose f ∈ C(4)[a, b]. Then the composite Simpson’s rule for n+1 points, a = x0, x1, . . . , x2m =
b, is given by

29

∫ b

a

f(x) dx =
h

3
[f(a) + f(b) + 2

m−1∑
j=1

f(x2j) + 4
m∑
j=1

f(x2j−1)]−
(b− a)h4

180
f ′′(ζ) (115)

where h = b−a
2m

, xj = a+ jh for j = 0, . . . , n and ζ ∈ (a, b).

General Formula

To create a general quadrature formula given a interval [a, b] and data points x0, x1, . . . , xn
on the interval you simply do

∫ b

a

f(x) dx ≈ w0f(x0) + w1f(x1) + · · ·+ wnf(xn) (116)

Then just assuming f(x) as growing degree of polynomials we get a system of equations where
we can find all coefficients wi

∫ b

a

1 dx ≈ w0f(x0) + w1f(x1) + · · ·+ wnf(xn) (117)∫ b

a

x dx ≈ w0f(x0) + w1f(x1) + · · ·+ wnf(xn) (118)∫ b

a

x2 dx ≈ w0f(x0) + w1f(x1) + · · ·+ wnf(xn) (119)

... (120)

You stop assuming higher degree polynomials when you have the same amout of equations
as wi, i.e n equations. The ADA of this quadrature is n or n+ 1.

6.3 Gaussian Quadratures

Just like interpolation, having equally distanced data points is sub optimal. A smarter choice
of the data points can be necessary because of existing data and also produce better approx-
imations.

Legendre Polynomials

This is orthogonal polynomials, similar to Chebyshev, defined at the interval x ∈ [−1, 1] and
have the following properties:

LEn(x) =
1

2nn!

dn

dxn
(x2 − 1)n , for x ∈ [−1, 1] (121)

LEn(x) is polynomial of degree n for x ∈ [−1, 1] (122)∫ 1

−1
Q(x)LEn(x) dx = 0 if Q(x) is of degree n or less (123)

Legendre polynomials are also given recursively

30

(n+ 1)LEn+1(x) = (2n+ 1)xLEn(x)− nLEn−1(x) (124)

LE0 = 1 (125)

LE1 = x (126)

When using Legendre polynomials to calculate a Gaussian quadrature you first need to find
the n-degree Legendre polynomial LEn(x). The roots of LEn(x) are the xi you pick on the
interval [−1, 1]. After you have found n points xi you find the coefficients by assuming test
functions, e.g f(x) = 1, or by integrating over a Lagrange polynomial Li(x)

wi =

∫ 1

−1
Li(x) dx (127)

When all xi and wi have been found for the interval [−1, 1] you convert these to an arbitrary
interval [a, b] by the following formulas

x[a,b] =
b− a

2
x[−1,1] +

b+ a

2
(128)

w[a,b] =
b− a

2
w[−1,1] (129)

After this you have all your wi and xi, and the next step is to approximate f(x) on your given
interval [a, b].

Hence, a Gaussian quadrature of a function is the linear combination of n function evaluations
at the Legendre roots and weights shifted to [a, b].

Different from Newton-Cotes, Gaussian quadratures have a ADA of 2n − 1 which is a big
improvement.

Proof of ADA Gaussian Quadratures:

Let P (x) be of degree 2n− 1 and let us compute the Gaussian quadrature of it. Using long
division we can express P2n−1(x) we get

P2n−1(x) = Qn−1(x)LEn(x) +Rn−1 =⇒ (130)∫ 1

−1
P2n−1(x) dx =

∫ 1

−1
Qn−1(x)LEn(x) dx+

∫ 1

−1
Rn−1(x) dx (131)

As we know that the rest term R(x) can be calculated exactly with for example Newton-Cotes.
Still, for the answer to be exact, i.e ADA = 2n− 1, we need the term

∫ 1

−1
Qn−1(x)LEn(x) dx (132)

to be = 0. If LEn(x) is Legendre Polynomials this is true and thus ADA = 2n− 1.

31

7 Differential Equations (L22)

A differential equation is an equation involving derivatives. Here the goal is commonly to find
the function f(x) describing a phenomenon in nature, instead of a numerical answer. If the
equation contains derivatives of only one variable they are ordinary (ODE). If the equation
contains derivatives of more than one variable they are partial (PDE).

7.1 Ordinary Differential Equations (ODE)

Commonly we have ODEs with Initial Value Problem, (IVP), for example

y′ = f(t, y) (133)

y(0) = y0 (134)

This system may be solvable analytically, but in some cases it must be numerically approx-
imated. ODEs of higher order can be reduced to these simple IVP systems. For example a
third degree system

y′′′ − 3y′ + 4y = 0 (135)

y(0) = 1 (136)

y′(0) = 0 (137)

y′′(0) = 1 (138)

can be reduced by firstly introducing variables

u1 = y =⇒ u′1 = u2 (139)

u2 = y′ =⇒ u′2 = u3 (140)

u3 = y′′ =⇒ u′3 = solve y′′′ in initial equation (141)

This becomes a linear system Au = u′. The initial conditions for ui is given from original
system.

7.2 Euler’s Method

This method produces a numerical approximation of the IVP by iterating the Explicit or Im-
plicit variation. The explicit tends to be unstable, i.e wanting to blow up, while the implicit
tends to be stable. This stability analysis is based on the Linear Test Equation

y′ = λy (142)

Here the value of λ and the step size h play a crucial roll in stability. This is most easily seen
by pictures. Depending on the f(t, y) we should choose one or the other method. If f(t, y)
wants to blow up, then explicit generally is the best choice. If f(t, y) wants to be stable, then
implicit generally is the best choice. However, you can do the stability analysis for f(t, y) or
create a vector field to be sure and not guess.

32

Explicit

wi+1 = wi + hf (ti, wi) (143)
where

i = 0, 1, 2, . . . (144)

w0 = y0 (145)

h = ti+1 − ti (146)

The iteration starts at t0. Stability is given by:

Convergence rate is linear.

Implicit

wi+1 = wi + hf (ti+1, wi+1) (147)
The difference here is f(ti+1, wi+1). Otherwise it is the same. To iterate the system you first
need to factor out all wi+1 on one side.

Stability is given by:

33

Convergence rate is linear.

The implicit method is different from explicit in the way that it creates a equation system to
solve, instead of just needing to plug in the initial values as in explicit to generate next ti.
This is seen most easily in an example of a non-linear two dimensional system:

u′1(t, y) = sin(u2(t)) (148)

u′2(t, y) = −u1(t) + t2 (149)

A variable change (u, v) = (u1, u2) gives us

u′ = sin(v) (150)

v′ = −u+ t2 (151)

and the formula for implicit Euler gives the following general equations to solve

ui+1 = ui + h · sin (vi+1) (152)

vi+1 = vi − h · ui+1 + h · t2i+1 (153)

Assume now that h = 1, t0 = 0 and (u0, v0) = (π/2, 0). This gives us the following sys-
tem

u1 = u0 + h · sin (v1) = π/2 + sin (v1) (154)

v1 = vi − h · u1 + h · t21 = −u1 + 1 (155)

34

Because we have the term sin (vi+1) the system is difficult to solve - solution need to be
approximated. This is done by rewriting the problem so we can use multi dimension New-
ton.

u1 − π/2− sin (v1) = 0 (156)

v1 + u1 − 1 = 0 (157)

The iteration of Newton will then give an approximation of (u1, v1). This can be repeated to
next (u2, v2) and so on.

Theory

Consistent (Method)

How well a numerical method agrees with ODE - studies truncation error.

Convergent (Solution)

A numerical solution is said to be convergent if the numerical solution approaches the exact
solution as step size h→ 0. All methods presented are convergent.

Stable (Method and Solution)

How well can the method handle small rounding and truncation errors. Can such small errors
swamp the solution and make it blow up?

35

8 Optional extra material

8.1 Horner’s Method

The most effective way in terms of NOO to evaluate a polynomial Pn(x) of degree n is the
following:

Pn(x) = ((...(anx+ an−1)x+ an−2)x+ ...+ a2)x+ a1)x+ a0 (158)

36

	General Concepts and Taylor (L1)
	Error of Approximation
	Convergence Order
	Taylor's Theorem 1D

	Root Finding (L2, L3, L4)
	Bisection Method
	Fixed Point Iteration (FPI)
	Newton Method 1D
	Secant Method

	Linear systems, eigenvalues (L5, L6, L7, L8, L9, L10, L11)
	Vector and Matrix Norms
	Condition Number of a Matrix
	Eigenvalues and Eigenvectors
	Projection
	Newtons Method Rn, solving Ax = b iteratively
	More Iterative Methods for Ax = b
	Gaussian elimination
	LU factorization
	QR Factorization
	Power Method
	Rayleigh Quotient Iteration

	Interpolation (L12, L13, L14, L15, L16, L17)
	Least Square
	Polynomial Interpolation
	Vandermonde Method
	Lagrange Interpolation
	Chebyshev
	Cubic Splines
	Bezier Curves

	Fourier Transforms (L17, L18, L19)
	Complex Arithmetic
	The Discrete Fourier Transform
	The Fast Fourier Transform

	Numerical Integration (L20, L21)
	Newton-Cotes
	Composite Newton-Cotes
	Gaussian Quadratures

	Differential Equations (L22)
	Ordinary Differential Equations (ODE)
	Euler's Method

	Optional extra material
	Horner's Method

