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1 General Concepts and Taylor (L1)
In math a few problems can be solved exactly. For example

r+y=1 (1)
xr—y=0 (2)

Most real life problems must be solved numerically, i.e with an approximation and an error.
These are typically Non-linear equations or Differential equations.

”Numerical analysis is about constructing and analyzing quantitative methods for
the computation of solutions to mathematical problems.”

The main concerns of numerical analysis are:
1. Approximating the solution
2. Cost of the approximation
3. Error of the approximation

With cost we mean number of operations (NOO), such as addition, multiplication etc. Dif-
ferent factors in real life such as computing power, type of processor etc may also be needed
to taken into account, but this is math and therefore only NOO.

Because we get approximation, we are not interested in exact answers but instead approxi-
mations within a given tolerance. This tolerance is commonly our Stopping Criteria, i.e
stop iterating if & < TOL.

1.1 Error of Approximation
Absolute Error

Assume that the approximation p(x) of the real solution f(x). Then the absolute error is
given by

E=f(z) = p(z)] (3)

Relative Error

Another type of error is the relative error which is a percentage given by

Ip(z)|

B-

Truncation Error

A truncation error is for example only keeping Taylor terms up to a certain degree, e.g

e"~l+uw (5)



Round-off Error

Computers can not represent all real numbers exactly because they are discrete. This leads
to an inevitable round off error, e.g 2.1234567 may be rounded up to 2.1 in a computer if
only few bits can represent the value.

Forward Error

Given by |r—z,,|, also called the horizontal distance since it measures distance in x-direction.

Backward Error

Given by | f(z,)|, also called the vertical distance since it measures distance in y-direction.

1.2 Convergence Order
How fast a given algorithm, method, scheme converges to the correct value is important.
Definition:

Let e, = |r — x,| be the error of an iterative method. If

lim & =g <1 (6)

n— oo efb

then the method is said to converge with order k and rate S

Different orders and rates
If the order k = 1 then we have the following rates:
1. if S — 0 - super linear convergence
2. it S — 1 - sub linear convergence
3. if S =1 - logarithmic convergence
4. if S > 1 - diverge

For orders £ = 2,3, i.e quadratic- and cubic convergence, or higher then the method
converges with rate S if and only if 0 < S < co. To be clear, this means that if S diverges to
oo then the method also diverges for that convergence order.

1.3 Taylor’s Theorem 1D

Let f be k+ 1 times continuously differentiable function on the interval between x and xq for
given real numbers x and zy. Then there exist a number ¢ in the interval such that

f(x) = P(x) + R(x) (7)

where the polynomial P(z) (approximation term) of degree k is given by,

J" (o) (x —20)> 4 ... + / ](;!UO) (z — x0)* (8)

flawo) + f'(ao)(z — z0) + T




and the remainder R(x) (error term) of degree k + 1 is given by

Q)
(k+1)!

(z — o)t (9)

Taylor’s Theorem 2-D Example

Let f(z,y) have 3 continuous partial derivatives on the interval between (z,y) and (xg, yo)
for given real points (x,y) and (xg,yo). Then there exist a point («, 3) in the interval such
that

f(a:,y) :P(x,y)+R(x,y) (10)

where the polynomial P(z,y) (approximation term) is given by,

f(@0,90) + f1(20,90)(x — w0) + [, (%0, Y0) (¥ — Yo)+

%[f;:/x(xoﬁ yﬂ)(x - IL'())Q + 2fa/:/y(x0> yo)(l' - $0)(y - yO) + fg;/y(x(b yO)(y - y0)2]

and the remainder R(z,y) (error term) is given by

Sl (0, B) (o — 20)° + 3128, (0, )& — w0)(y — o)+ (1)
3120, (0, ) — 20) (y — 0)? + £ (0. B)(w — )] (12)




2 Root Finding (L2, L3, L4)

2.1 Bisection Method
Tp + Tp—1
In+l = 9 (13)

What - Solves f(z) =0

Requires - Continuous f(z), two starting points [ag, b]

e How - Divide interval until number of iterations or tolerance have been reached

Advantages - Simple, always converge, precise formulation of error
e Disadvantages - Slow convergence, may discard early good approximation

Bisection Theorem:

Suppose the following
1. f is continuous
2. f(r) =0 for some r € [a, b
3. f(a)f(b) <0, i.e opposite signs
Then the sequence produced by the Bisection Method converges to the root r of f

nh_)rxolo Ty =T (14)
and the absolute error is given by
bn — Qp bo — Qo
Ir — x| < 5 = on (15)

2.2 Fixed Point Iteration (FPI)

Tn+1 = g(Tn) (16)



e What - Solves g(x) =z

e Requires - Continuous g(z), one starting points x

How - Iterate from starting point

Advantages - Simple
e Disadvantages - Does not always converge, rate of convergence depends on ¢'(z)

Contractive:

A continuous g is contractive on an interval [a, b] if

g (x)] < 1, for all z € (a,b) (17)

FPI Theorem:

The function g : [a,b] — R has a unique fixed points if
1. g:[a,b] — [a,b] (existence)
2. g is contractive on (a, b)

Then any initial zg € [a, b] will converge to the root. The absolute error is then given by

Cn

|2, — 7| < 1 |21 — o (18)

—C

where ¢ = max|g'(x)| < 1 on the interval.

2.3 Newton Method 1D

A L)
f(xn)

(19)



> A

For this to work, our initial zy needs to be close to the root we are trying to approximate.
e What - Solves f(z) = 0 (linear and nonlinear f)
e Requires - Continuous f(x), one starting points x

e How - Iterate from starting point by following the tangent line of f(x,) down to find
the next x,,, value

e Advantages - Fast (can be quadratic near root), error estimate and number of itera-
tions given a tolerance can be calculated

e Disadvantages - Does not always converge (depends on starting point and f), costly
to calculate f’(x), problems if f'(z) =0

The convergence rate of Newton near a root can be found by Taylor expanding f(x) with the
second derivative as error term. The result is quadratic convergence

e Q) S()
B e *’_2f/(xn)|’v‘2f'(r)’ (20)
Assuming that f'(x,) # 0 for all x,, and f"(r) < co.
2.4 Secant Method
In — In—1

R Al T ey ey B

What - Solves f(z) =0 (linear and nonlinear f)

e Requires - Continuous f(z), two starting points zg, z;

How - Iterate from starting points by following the secant of f(x,) and f(z,_1) down
to find the next x,.1 value

Advantages - Not too difficult to implement, no need to calculate derivatives, faster
convergence than the Bisection Method

8



e Disadvantages - Does not always converge, costly function evaluations, may be slower
than the Newton Method

The convergence rate of Secant Method can be shown to be super linear.

1
lim & — g < 0o, where k = +2\/5

~ 1.62 (22)

n—oo 67]2‘




3 Linear systems, eigenvalues (L5, L6, L7, L8, L9, L10,
L11)

This chapter will cover methods to solve Az = b. These types of linear systems are found
everywhere. If the equations describing a system is hard, i.e non-linear, we can always simplify
with Taylor expansion. Keeping the first order terms for our approximation and the quadratic
terms as error. After the Taylor expansion, we are back to a system that can be described as
Ax =b.

Matrix Algebra
3.1 Vector and Matrix Norms

A vector or matrix norm, denoted || - ||, is a way to define distance in a space. The common
used norm i Euclidean, but there exists more. Mathematically a vector or matrix norm is a
real valued function which takes vectors or matrices as inputs and outputs a scalar.

Any given vector norm have these properties:

1. ||z|| > 0 for all z € R™

2. ||z|| = 0 if and only if z = 0

3. ||kx|| = |k| - ||z|| for all K € R and z € R™
4 lz +yll < flaf] + [ly[| for all 2,y € R

Similarly a matrix norm have these properties:
1. [|A]] >0forall A: N x M
2. ||A]| =0if and only if A =0

3. ||kA||l = |k| - ||A]| for all k € R
4. [|[A+ B[ < [[A]l + [|B]]
5. [|ABJ|| < ||A|| - ||B]|

{;-norm

For a column vector, n x 1 the norm is defined as

][y =) || (23)
=1

For a matrix A, r x ¢ this norm is defined as

1A]l1 = max Y fay] (24)
i=1

1<j<e

10



lo-norm

Also know as the Euclidean and is the typical length of a row or column vector we are use
too.

(25)
Notice that this equation is only defined for row or column vectors.
l-norm
For a column vector, n x 1 the norm is defined as
lelloo = max [z (26)
For a matrix A, r x ¢ this norm is defined as
14 = max 3 Jay | (27)
Sigr £
Spectral Radius Definition:
Let A be a n x n matrix with complex or real elements with eigenvalues A1, Aa, ..., A,,. Then
the spectral radius is defined as
p(A) = max [A| (28)

Theorem:

Suppose that A is an n x n matrix. Then

V(ATA) = [[A]l2 (29)

p(A) < ||A]] for any matrix norm (30)
1
m = [|A7Y |y for A symmetric (31)

3.2 Condition Number of a Matrix

A condition number of a matrix measures how sensitive the answer is to small changes in the
input data and to round-off errors made during the solution process.

This is important, as it informs us on how much we should trust our approximations. A large
condition number is bad for our approximation.
Definition:

k(A) = [|A]] - [JA7] (32)

11



where 1 < k(A) < oco. If A is symmetric, we have

max ||

k(A) = (33)

min ||

Practical Understanding of k(A):

Suppose we have a computer which rounds numbers to 1071, i.e 15 decimals. Suppose that
the condition number of your matrix A is 10'°. The condition number tells you that out of
the 15 decimals, you can only trust 5 in your answer.

3.3 Eigenvalues and Eigenvectors

For a square matrix A, n X n, we define eigenvalues, A\, and eigenvectors, x, as follows:

Az = \x (34)

Theorem:
Let the eigenvalues of the square matrix A be A, Ag, ..., \,. Then:

1. The eigenvalues of the inverse matrix A~! are A7', A%, ..., A~ given that A~! exists.
The eigenvectors are the same

2. The eigenvalues of the shifted matrix A—s/l are A\;—s, \o—s, ..., \,—s. The eigenvectors
are the same

3.4 Projection

"%

b N
Y

PN W,

Given two vectors ujy,us we can find the orthogonal projections uj of us onto u; by the
following formula:

;U2 U
u2_

[[ua] |2

And to find the vector from ), tip to the tip of u we simply take us — uy. We have now for
vectors that are orthogonal that we also can normalize.

12



Gram-Schmidt Process

The goal of this method is to othonormalize a set of given vector. This is done with repeated

uses of the projection formula. Given the vectors uq, us, us, ..., ur we do the following:
V1 = Uy (36)
Vo = Uy — ﬁvl (37)
5= R e )
(39)
Finally all orthogonal vectors are normalized ¢; = HZ_ZH The cost is O(nk?) where n is the

dimension of the vectors and & is the number of vectors.

3.5 Newtons Method R*

Tpol = Tn — DF " Nap)F(zn) (40)

The method is an iterative method giving an approximation. In the equation DF' is the
Jacobian Matrix.

i A ... SA
0x1 0T 0xn
Sfa df2 .. Of2
ox1 dxo OTn (41)
n Ofn .. Ifn
ox1 dx2 0Tn

There are some problems with the Jacobian matrix

1. It might be hard to calculate or even impossible. Solution to this is to approximate the
Jacobian

2. We always avoid calculating the inverse by rewriting it Y = DF~! < DF.Y =F
and solve for YV

The convergence rate of the multidimensional Newton Method is also quadratic near a root.
This is also shown by Taylor expanding near the root as in the 1D case.

3.6 More Iterative Methods for Az =b

Let A =L+ D + U, where A is the matrix, L the lower triangular elements, D the di-
agonal element and U the upper triangular elements. Then a fixed point iteration can be
performed

13



where
G=1-Q'4A (43)
C=Q ' (44)
We still need to know what @) is. How we choose the ) matrix depends on which method we
want to use. We have the following methods:
1. Jacobi-Q =D
2. Richardson - Q) =1
3. Gauss-Seidel - Q = (D + L)

Iterative Theorem 1:

If A is strictly diagonally dominant, i.e
laxs| > Z lag;| , where j # k (45)
j=1
for all rows, then all the iterative methods converge for any initial choice of g

Iterative Theorem 2:

All the iterative methods converge for any initial choice of xq if and only if

p(G) <1 (46)
where p(G) is the spectral radius.
General information about the iterative methods:
e Gauss-Seidel is faster than Jacobi
e Gauss-Seidel and Jacobi have a cost of O(n?) operations per iteration

e One iterative method may converge to solution while the others may not. Check which
converge with the spectral radius!

Gaussian elimination may be better than iteration depending on size of system. If

Intol - n
Inp(G) 3

(47)
then iterative methods are better than Gaussian elimination (n is the size of A)

3.7 Gaussian elimination

The normal method when faced with a linear system Ax = b and gives an exact solution.
You simply perform the elimination and a back substitution.

The cost of Gaussian elimination is

on® n®> Tn
o 48
3 + 2 6 ( )

and for back substitution is n?.

14



3.8 LU factorization

Solves Ax = b by factorization of A. The power of this method is solving the same system
multiple times for different b;.

PA=LU = Ar=b <— LUx = Pb
(49)

Where L is a lower triangular matrix with ones in the diagonal, U is a upper triangular matrix
and P is the permutation matrix. A permutation matrix keeps track of row changes while
performing Gaussian elimination on the original A matrix. This needs to be done to because of
a phenomenon called swamping. To prevent swamping we check that each partial pivoting
element are the largest in it’s column, i.e |ap| > |a;|.

The cost of LU factorization is approximately the same as Gaussian

2 3
~ % + 2n2 (50)

However, this cost is for finding L, U, P and back substitution. After the matrices are found,
you can solve the same system for a different b; for the cost of 2n? as L and U are triangular
and therefore only needs a back substitution.

3.9 QR Factorization

We factorise our matrix to A = QR where () is an orthogonal matrix and R is an upper
triangular matrix. This is done by the following method:

1. Create ) matrix out of all vectors ¢; from Gram-Schimdt with A’s column vectors as
input

2. R is then simply QT A
We like this method because orthogonal matrix = Q~! = Q*. To solve Azx = b we do
Ar=b < QRx=0b < Rr=0Q"b (51)

Because this is upper triangular this is easy to solve. If no solution exists we get the best
least square approximation of the solution.

3.10 Power Method

Eigenvalues are extremely important and this method finds the greatest absolute eigenvalue
for a given matrix A by iterating this to find the eigenvector:

Ax‘k
X =
LT Ay

15
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After finding the eigenvector for the largest eigenvalue, we retrieve the eigenvalue with the
Rayleigh quotient:

= (53)

Assuming A : n X n with eigenvalues A\j, A, ..., A\, satisfying [A;| > [Ag| > -+ > |\, the
Power Method converges rate of convergence is given by

| Akt1]
W] (54)

and is linear. This for almost any initial vector.

3.11 Rayleigh Quotient Iteration

To find all eigenvalues given a matrix A we can use the Power Method but in iterations.
Assume the matrix is of size n, then we have n eigenvalues. To find all we simply run the
Power Method to find the largest eigenvalue. Now that we now this value, we can shift it
out of the matrix, i.e A,y = A — Al. Applying the Power Method to A,., will now give
back the second largest eigenvalue of the original matrix A. Repeating this will give all
eigenvalues.

The convergence is quadratic but can be cubic if A symmetric.

To run the algorithm we need an initial vector xy and a square matrix A.

forj =12 3 ... do

Uj_q = Hffj—j\l % normalize

)\3;1 = U?ﬂ_lAUjfl % Raylelgh

Solve(A — Nj_1I)x; = uj_1 % Inverse Power Method (could just use Power Method?)
end

16



4 Interpolation (L12, L13, L14, L15, L16, L17)

In real life we do not have continuous functions. Instead, we use data sampled at certain times.
These data points (zo, Yo, 20, - - - ), (1,91, 21 - - - ), . . . can be of several dimensions. We use this
to represent a discrete function. From these discrete points, we can interpolate a continuous
function, i.e our model consisting of elementary functions. Another motivation is that real
life measurements come with errors and noise. Many times the given data over determine
the problem, i.e more equations than variables, making a solution non-existent.

4.1 Least Square

As in statistics when we try to approximate parameters for a distribution, the Least Squares
method tries to find the solution which minimizes the error from the "real value”. The
underlying model can both be linear and non-linear. The general idea is that after gathering
data points you assume a model and insert the measured points into the model:

Yo = f(wo) (55)
y1 = f(x1) (56)
Y2 = f(x2) (57)
(58)
— y=Ac (59)
We now want a solution with the smallest possible squared error
R=d+d5+di+ - +d (60)

where n is the number of data points, R is the residual and d; is the Euclidean distance from
model to the measured value.

If linear we have the model y = a + bx
K 3 1
yecrical

0“ sers

and therefore

dj = (y; — (a + bxy)) (61)

We are interested in the Least Square which minimizes R which depends on the parameters
a,b. This is achieved by

1. Take the derivative of R and set it to zero

17



2. Solve for the parameters a and b
This can also be done by using the QR-method above and should give same solution.

For a non-linear model, for example exponential model y = C;e**, we do the same procedure
but now f(x) is C1e** instead of a+bx as in the linear case. Inserting the data points we get a
system Ac = y which we can solve using the QR-method to get the least square approximation.
We are once again here trying to find the coefficients of our model.

4.2 Polynomial Interpolation

Given data points a natural model for us to use is a polynomial. These are easy to use,
compute derivatives, primitives etc.

Interpolating Polynomial Definition:

A polynomial p € P, interpolates the points (z;,y;) for i = 0,... n if

p(rk) = Yk, Yk €40,...,n} (62)

P, )
(Fny.)

)

<

Werestrass Approximation Theorem:

Suppose f(x) is a continuous function on [a,b]. Then Ve > 0 there exists polynomial p(z)
defined on [a, b] such that
|f() = p(2)] < € Vala,b] (63)

In simple English - we can find a polynomial as close as we like to any given function
f(z).
4.3 Vandermonde Method

This is the easiest interpolating approach. Given n + 1 distinct points use an n degree
polynomial p,(z) = ag+az+asr?+- - -+a,z" and evaluate it for each data point (z;, y;).

Yo = Qo + a1Z0 + ATy + - -+ + ApTh (64)
Y1 = ap + a1y + agx? + -+ apxy (65)

(66)
Yn = Qo + a1, + agxi + - Fapx; (67)

This gives us a linear system Va =y
18



2
1 zy xj i ag Yo
I = ﬁ | | m Y1
1 2 n

Typ Ty, Ty Qn Yn

Some properties of the Vandermonde matrix V' are:

1. If all @; are distinct then det(V) # 0

2. A square Vandermonde matrix is invertible if and only if the a; are distinct

(68)

The advantage of this method is the simplicity. However, the disadvantage is that the

Vandermonde matrix will have a large condition number.

4.4 Lagrange Interpolation

Given data points (z;,y;) the goal of this method is interpolate these n 4+ 1 points with a

polynomial of degree n:

pn(l‘) =ag+ a1x + a2x2 4+ .4 ClnlL‘n

You find the Lagrange polynomial by doing the following. Let

= ZyiLi(;v), where
i=0

n
T —x
Li(z) = ][ x_; =
J=0,i#j J

(x —zo)(x —21) ... (T — )

(Written out ) (xZ _ Io)(% — xl) - ($z - xn)

The error estimate of Lagrange interpolation can be proven to be
n+1 n
\f(ft)—pn(x) n_i_l'lljjozx—.’ﬁl

The advantages of Lagrange are:
e Error estimate is provided
e Does not restrict nodes to be evenly spaced at x

The disadvantages of Lagrange are:

(69)

(73)

e The error is very difficult to know in advance since normally we do not know the actual

function f(z)

e We must recompute everything from the beginning if an extra data point is added to

existing data set

19



4.5 Chebyshev

If Lagrange is used with equally spaced data points we run into Runge’s Phenomenon.
The phenomenon is that the error increase drastically at the end points.

WER WHAT IS

£'S PAZNIMEN

‘;Uﬁ‘-* o Ao \G'Q.
'-n*u_PO'-qruJ

X —eqwduﬁ.mﬂ'

‘o
— Run?c's PM=W =3\
"{'oa Mmuda efrofr

LON) (o< eq uadigtamt noday
Wow do we olde the wodesr x.. . %.

To remedy this, and minimize the error estimate of Lagrange we instead pick points that are
not equally spaced, but given by the roots of Chebyshev polynomials. The Chebyshev
polynomials are given by

T,(x) = cos (narccos (x)), —1 <z <1 (74)
or the recursive formula
Toi1=2x -Ty(x) —T,—1(z) ,n=1,2 (75
To=1 (76)
h=x (77

The z; are the roots of the Chebyshev polynomials on the interval [—1,1]. To transform the
new points to any interval we use

£ = %[(b )z +a+] (78)

where 7; is the new x-point of the interval [a, b].

4.6 Cubic Splines

Having a n-degree polynomial for n + 1 data points is over kill and some times bad. An-
other idea is to split all the data points into intervals and use several interconnecting cubic
polynomials to interpolate.

Cubic Spline Definition: The polynomial S € C?[a, b] is called a cubic spline on [a, b] if it

is a third degree polynomial in each interval between the given nodes (z;,y;) for j =0,...,n,

e
Sl(ﬂf) = ai(:v — .CEZ‘)S + bl<£L‘ — $i)2+Ci(ﬂf — .CI?Z) + dl (79)
fori=0,1,...,n—1 (80)

20



with the following properties:

1. Si(x;) =y, fori=0,...,n—1

2. S q(x;))=y; fori=1,...,n

3. 8! _y(x;) = Si(x;) fori=1,....,n—1
4. SI(x;) = S!(x;) fori=1,...,n—1

The properties gives us 4n — 2 conditions. There are 4n parameters a;, b;, ¢;, d;. We need
two more conditions to solve this system and therefore we make assumptions about the end
points:

e Natural Spline - S{/(zo) =0 and S!/_,(z,) =0

Clamped Spline - S{(zo) = v, and S/, (z,) = vo
e Curvature Adjusted Spline - S{(zo) = v; and S)/_,(z,) = v2
e Not-a-Knot Spline - SJ'(z1) = S (x1) and S 5(xp—1) = S | (zp-1)
The error for a Natural Cubic Spline is given by
s
15(2) — f)] < 7O (51)

where h is the equal distance between points.

To find the coefficients a;,b;,¢;, d; we first define a new variable o; = S/(z;) and o, =
S/ (x,). From this variable we can describe all other:

Oi+1 — 04
= 82
¢ 6h (82)
O’.
by = = 83
. (83)
200+ 0it1 | Yit1 — Yi
= —h 84
We still need do not know our o;. However these can be find using
6
01 +40; + 0511 = ﬁ(yi—l — 2yi + Yiv1) (86)
The equation above forms the following system
4 1 0 - 0] Rz [ Yo —2y1+y2 — 0y
L4 1 -0 02 Yo — 2y1 + ¥2
0 1 4 0 . X
6 :
= : (87)
0 4 1 0 ’
0 --- 1 4 1 : :
0o --- 0 1 4 _Un—l_ _yn—2 - 2%—1 + Yn — Un_
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This a Az = b system which is always solvable because A is diagonally dominant. To solve
this system, the cost is O(k*n) where k is the number of diagonals, in our case above k = 3,
and n is the dimension of A.

4.7 Bezier Curves

Bezier curves are used widely in computer graphics. Instead of focusing on interpolation we
are now interested in smoothness and functionality.

Bezier Curve Definition:

Given a set of points {P; = (x;,y;)}, i = 0,1,...,n then the following is a parametric Bezier
curve of degree n:

n

P(t) =(z(t),y(t)) = Z P,B}'(t) , where explicitly (88)
x(t) =x,BI(t) + a:lBl;(t) + - 42, B (1) (89)
y(t) =yo By (t) + 11 BY (t) + - - - + yn B, (1) (90)

where ¢ € [0, 1] (91)

The B!'(t) are the so called Bernstein Polynomials defined as

n

s = (7)a- o (92

?

A short example for a third degree Bezier Curve. We need 4 points for a curve of degree
3, i.e (zo, o), (T1,91),- .-, (x3,y3). The first and last points are called end points and the
middle points are called control points. Properties of this curve is

1. P(t) is continuous and has derivatives of all orders
2. P(0) = By and P(1) = P lie on the curve i.e the end points are interpolated

3. The curve is always tangent to P, — Py and P3 — Py

Po

Fe

You can create Composite Bezier Curves from using repeated third degree Bezier Curves.
When connecting these curves, we ensure that they are continuous but not necessarily smooth.
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To get the derivatives to agree we need to pick the middle points next to the shared end points
on a line.

The de Casteljau Algorithm:

To compute a point ¢ = ty, on the Bezier Curve, B(t), with control points Py, Py, ..., Py,:
1. Define P” = P, for i =0,1,...,n
2. Execute

for j = 1:n do
for 1 = 0:n-j do
| P/ =P (1—t)) + P/ -t
end
end

3. B(to) = P
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5 Fourier Transforms (L17, L18, L19)

The Fourier transforms of interest is the Discrete Fourier Transform (DFT) and the Fast
Fourier Transform (FFT). These remarkable transforms have been endless applications
and have been crucial in for example sending signals. The transforms rely on complex numbers
so we start with a short review.

5.1 Complex Arithmetic

A number is complex if it contains the imaginary number ¢ = v/—1 and a complex number is
further determined by it’s real and imaginary parts z = a + ¢b. A complex number can also
be represented on polar from

c=a+ib = (93)
re where (94)
e = cos +isinf (95)
r=va>+p? (96)

A complex conjugate Z = a — ib is defined as flipping the sign of the imaginary part.

Roots of Unity

An nth root of unity, n € NT, is a number z satisfying the equation 2™ = 1. The nth roots
of unity are given
27k ;
z=en ' fork=0,1,....,n—1 (97)

Primitive Root of Unity:

An nth root of unity is primitive if 2* # 1 for k = 1,2,...,n — 1.
Important properties of primitive nth roots of unity are:
Let w = e_%i, where [ < n

L 14+wr+wk+. 4wk =0for 1 <k<n-1

2. 14w +w? + - +wUn =p

1 1

3. w=w"

4. If nis even, wz = 1

5.2 The Discrete Fourier Transform

In this transform we have as input evenly spaced data points (¢;, ;). From these inputs we
try to find the modes/frequencies for the sinus, cosinus waves that can describe the input
signal as a sum of these waves. The transform is given by

n—1
1 .
== D for k=01, n -1 (98)

=0
27,

w = 6_71 (99)
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or as a system of F'x =y where F' is the Fourier Matrix

w’ W w’ w’ .
w° wl w? o wL mo Yo

A w2 wt o 2D _1 = y.l (100)
_wo I N TG DI w(n—l)(n—l)- Ln—1 Yn—1

The Fourier Matrix is both orthogonal and symmetric. Hence the inverse is given by the
conjugate transpose of F

Ft=F" (101)

Interpolating with DFT

Given data points xg, 1, ..., T, 1 occuring at evenly spaced points on the interval [c, d] de-
noted by t; = c—{—j@ for j=0,1,...,n— 1. Then

=

IS
P(t) = — ) (agcos

k=0

21k(t — ¢) . 27mk(t —¢)

¥ — by sin ——— ) (102)

3

where P(t;) = z;, i.e interpolating, and Fx; = a; + tb; = y;. This can be simplified further
to

-1

B

Q
o
[\
bl
iNg
!

2rk(t —c) by sin 21k(t — ¢)

) anjp  nr(t—c)
d—c d—c

oS (103)

P(t) = “% + — e cos =

vn n

(ay cos

Here we assume n is even. If n is not even you can still use this formula as the effect is
negligible.

A small trick you can do to avoid calculating sinus and cosinus functions is for xg, z1, ..., T,_1
data points assume that the modes y,, yn11,... i.e higher nodes than you can calculate are
all equal to zero. Then when you inverse transform with F7 -y = 2 we get more data points
out. These points are on the original interpolating curve. This can be seen as extrapolating
in the frequency plane.

Compression with DFT

You do not need to use all the nodes y; in the polynomial P(t). Leaving out some of the
modes, m < n, leads to the best Least Square Approximation and therefore compressing
the signal to only it’s crucial frequencies.

Po(t) = 2% + 2 S (4 cos 2rk(t —c) by sin 2mk(t — c)) Amp2  nm(t—c)

_— 104
n n < d—c d—c \/ﬁcos d—c (104)
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Filtering with DFT

Similar to compression, we can choose which modes we want in our resulting signal. In real
life, a signal often have high frequency noise. This can be filtered out by only taking the
first modes which is equivalent to the lower frequencies. Note! We can also filter our lower
frequencies and keep the higher, or do band of frequencies. The sky is the limit.

5.3 The Fast Fourier Transform

FFT is built upon the principal of divide and conquer. Instead of computing the modes
of a signal of size N at a cost of O(N?) we compute modes of 2 signals of size N/2 at a cost
ZNTQ = N?/2 which is cheaper. If N is a power of 2, e.g N = 29, you can repeat this process
q times, each time reducing a factor of 2 in cost. The signals will then have length % =1

and the cost is ]g—; = %2 = N and we do this ¢ times. The total cost of FFT will then be

gN = Nlog, N.

In a strict proof you show that the recurrence relation can be described as

T(N)=2%T(N/2) + N. (105)

This gives us O(N) at each level and we have log,(N) = ¢ levels.
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6 Numerical Integration (L20, L21)

Normally we cannot calculate an integration and therefore we approximate it numerically
with a sum:

| @~ Y w o) (106)

where wy, is the a weight function and f(zy) is a function evaluation. There are many formulas
that do this but we are mainly interested in

e Newton-Cotes
e Composite Newton-Cotes

e Gaussian Quadrature

Algebraic Degree of Accuracy (ADA)

The algebraic degree of accuracy of a quadrature formula is given by the power of the poly-
nomial p,(x) for which the quadrature is exact, i.e no error. This is also sometimes called
degree of precision.

This measurement only works for polynomials and is of interest as we normally do not know
f(z) and approximate it with polynomials.

6.1 Newton-Cotes

This is the simplest of the methods. Given a number of data points we try to approximate
the area under them. The main idea is to first approximate f(z) given the data points and
then estimate the area. To estimate f(x) we can use interpolating methods such as Lagrange,
DFT, Cubic Spline etc. To find the error of our approximation we Taylor expand and see
that our equation, e.g for the Trapezoid rule (2 points) we have

T2

F@)do = / (@) do + / " e(a) da (107)

T 1 Z1

/I ) dr = 5') [ (&= w)(@ — m) da (108)

1

This can be generalized to more points. If a integration formula (quadrature) includes end
points of interval then it is called a closed Newton-Cotes Quadrature and other wise open
Newton-Cotes Quadrature.

ADA of Newton-Cotes Theorem:

Suppose the following quadrature for n + 1 points

| e~ Y w o) (109)
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Then the formulas are exact up to polynomials of degree n + 1 if n is even or exact up to

polynomials of degree n if n is odd.

The commonly used formulas are listed below. Assume n is derived from data points xy, . . .

Midpoint

The input is one point zg and h is (r1 —z_1)/2

r1 3
| f@yde =2bsa) + (0

The ADA of midpoint is 1.

Trapezoidal

The input is two points xg, z1 and h is (z1 — x¢)

/ " p@yde = M) + 1) - )
” — g\o YT 9
The ADA of midpoint is 1.

Simpsons’s

v

) Ty

(110)

(111)

The input is three points xg,x1, 22 and h is the equidistant between the points, e.g (r; —

33'0)
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5
[ ) e = 5150 + 41w + s = G5 0) (12
The ADA of midpoint is 3.

Simpsons’s 3/8 Rule

The input is four points xg, x1, z2, 3 and h is the equidistant between the points, e.g (z3 —
1’0)

ho
[ e =) + 37w+ 3@ + sl - GO ()
The ADA of midpoint is 3.

6.2 Composite Newton-Cotes

The Newton-Cotes formulas are good as long as the interval in not wide. If the interval is
wide, the simplistic nature of the formulas such as assuming a line does not differ much from
the real f(x) leads to big errors. Therefore, if we split up the interval and use composites of
the simplistic formulas, we get good accuracy.

Composite Midpoint Rule
Suppose f € C?[a,b]. Then the composite midpoint rule for, a = zg,x1,..., 7, = b, is given

by

n/2

/f $—2h2fl‘2j b_(f)h (9 (114)

where h = &=¢ s rj=a+ (j+1)hfor j=-1,0,...,n,n+1and ¢ € (a,b).

Composite Trapezoidal Rule

Suppose f € C?[a, b]. Then the composite trapezoidal rule for n+1 points, a = zg, 21, . .., T, =
b, is given by

b
h (b—a)h?
[ #aris = Sisa) +22f (2] = L= iy (115)
Whereh:b_T",xj:a—i—jh for j=0,...,n and ¢ € (a,b).
Composite Simpson’s Rule
Suppose f € C¥]a,b]. Then the composite Simpson’s rule for n+1 points, a = zg, 71, . . . , Toy =

b, is given by
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b h (b —a)h*
[ #layin =31t + +2fo2] +4fo2“ SN0 e

where h = 24 z; = a+ jhfor j=0,...,n and ¢ € (a,b).

General Formula

To create a general quadrature formula given a interval [a,b] and data points xg, 21, ..., T,
on the interval you simply do

/ f@) dz & wof(wo) +wif(w1) + -+ + waf(2n) (117)

Then just assuming f(z) as growing degree of polynomials we get a system of equations where
we can find all coefficients w;

/abldx ~ wof (20) + wr f (@) + - - + wn f(n) (118)
/abxdx ~ wof (x0) + Wi f (1) + - + wn f () (119)
[ e ws ) ) oo (120
a (121)

You stop assuming higher degree polynomials when you have the same amout of equations
as w;, i.e n equations. The ADA of this quadrature is n or n + 1.

6.3 Gaussian Quadratures

Just like interpolation, having equally distanced data points is sub optimal. A smarter choice
of the data points can be necessary because of existing data and also produce better approx-
imations.

Legendre Polynomials

This is orthogonal polynomials, similar to Chebyshev, defined at the interval x € [—1,1] and
have the following properties:

1 a "
LEn(x) = S %(x —1)", for z € [-1,1] (122)
E,(z) is polynomial of degree n for z € [—1,1] (123)
/ Q(z)LE,(z)dx = 0 if Q(x) is of degree n or less (124)

Legendre polynomials are also given recursively
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(n+1)LE,+1(x) = (2n+ 1)zLE, () —nLE,_1(x) (125)
LE, =1 (126)
LE =z (127)

When using Legendre polynomials to calculate a Gaussian quadrature you first need to find
the n-degree Legendre polynomial LE, (x). The roots of LE, () are the x; you pick on the
interval [—1,1]. After you have found n points z; you find the coefficients by assuming test
functions, e.g f(x) = 1, or by integrating over a Lagrange polynomial L;(x)

w; = /1 Li(z) dx (128)

When all x; and w; have been found for the interval [—1, 1] you convert these to an arbitrary
interval [a, b] by the following formulas

b—a b+a
Ti_
g Ll 9

b—a
5 lU[,l’l} (130)

x[aﬂ = (129)

Wia,b) =

After this you have all your w; and x;, and the next step is to approximate f(x) on your given
interval [a, b].

Hence, a Gaussian quadrature of a function is the linear combination of n function evaluations
at the Legendre roots and weights shifted to [a, b].

Different from Newton-Cotes, Gaussian quadratures have a ADA of 2n — 1 which is a big
improvement.

Proof of ADA Gaussian Quadratures:

Let P(z) be of degree 2n — 1 and let us compute the Gaussian quadrature of it. Using long
division we can express Py, 1(z) we get

Pgn_l(])) = Qn_1<I>LEn($) + Rn—l — (131)

/_ 1 Py () dv = /_ 11 Qn-1(z)LE,(z) dx + / Ry _1(z)dx (132)

1 -1

As we know that the rest term R(z) can be calculated exactly with for example Newton-Cotes.
Still, for the answer to be exact, i.e ADA = 2n — 1, we need the term

/1 Qn_1(x)LE,(z)dx (133)

to be = 0. If LE,(z) is Legendre Polynomials this is true and thus ADA = 2n — 1.
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7 Differential Equations (L22)

A differential equation is an equation involving derivatives. Here the goal is commonly to find
the function f(z) describing a phenomenon in nature, instead of a numerical answer. If the
equation contains derivatives of only one variable they are ordinary (ODE). If the equation
contains derivatives of more than one variable they are partial (PDE).

7.1 Ordinary Differential Equations (ODE)
Commonly we have ODEs with Initial Value Problem, (IVP), for example

y = f(t,y) (134)
y(0) = yo (135)

This system may be solvable analytically, but in some cases it must be numerically approx-
imated. ODEs of higher order can be reduced to these simple IVP systems. For example a
third degree system

y" =3y +4y=0 (136)
y(0) =1 (137)
y(0) =0 (138)
y'(0) =1 (139)
can be reduced by firstly introducing variables
U=y = uj =uy (140)
uy =y = uh=ug (141)
ug =3y" = wujy = solve " in initial equation (142)

This becomes a linear system Au = u’. The initial conditions for u; is given from original
system.

7.2 Euler’s Method

This method produces a numerical approximation of the IVP by iterating the Explicit or Im-
plicit variation. The explicit tends to be unstable, i.e wanting to blow up, while the implicit
tends to be stable. This stability analysis is based on the Linear Test Equation

y =Ny (143)

Here the value of A and the step size h play a crucial roll in stability. This is most easily seen
by pictures. Depending on the f(¢,y) we should choose one or the other method. If f(¢,y)
wants to blow up, then explicit generally is the best choice. If f(¢,y) wants to be stable, then
implicit generally is the best choice. However, you can do the stability analysis for f(¢,y) or
create a vector field to be sure and not guess.
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Explicit

w; 1 = w; + hf(t;, w;)

where
i=01,2,. ..
Wo = Yo
h=tiy—1t

The iteration starts at ty. Stability is given by:

exeLiCT ¢ W, = Wt AAw, o
:Q‘\’AA)U.)“ < :U“'!’\a) (TN S

SrabE = (rud)V 'y, stoble i

Convergence rate is linear.

Implicit

wi1 = w; + hf(tip 1, wigt)

(144)

(145)
(146)
(147)

(148)

The difference here is f(t;11, w;11). Otherwise it is the same. To iterate the system you first

need to factor out all w;,; on one side.

Stability is given by:
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Convergence rate is linear.
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The implicit method is different from explicit in the way that it creates a equation system to
solve, instead of just needing to plug in the initial values as in explicit to generate next t;.
This is seen most easily in an example of a non-linear two dimensional system:

!
Uy

(t,y) = sin(us(t)) (149)

uy(t,y) = —uy(t) + 12 (150)

A variable change (u,v) = (uy, us) gives us

u = sin(v) (151)
v = —u+t? (152)

and the formula for implicit Euler gives the following general equations to solve

Ui+1 = Uy + h - sin (Ui—i—l) (153)
Vi1 = V; — h- Ujr1 +h- t?—l—l (154)

Assume now that h = 1, to = 0 and (ug,v9) = (7/2,0). This gives us the following sys-

tem

uy = ug + h-sin (vy) = 7/2 + sin (vy) (155)
vlzvi—h-ul—l—h-t%:—ulel (156)
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Because we have the term sin (v;41) the system is difficult to solve - solution need to be
approximated. This is done by rewriting the problem so we can use multi dimension New-
ton.

uy — /2 —sin(vy) =0 (157)
v+u —1=0 (158)

The iteration of Newton will then give an approximation of (uy,v;). This can be repeated to
next (us,v9) and so on.

Theory
Consistent (Method)

How well a numerical method agrees with ODE - studies truncation error.

Convergent (Solution)

A numerical solution is said to be convergent if the numerical solution approaches the exact
solution as step size h — 0. All methods presented are convergent.

Stable (Method and Solution)

How well can the method handle small rounding and truncation errors. Can such small errors
swamp the solution and make it blow up?
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8 Optional extra material

8.1 Horner’s Method

The most effective way in terms of NOO to evaluate a polynomial P,(x) of degree n is the
following:

P.(x) = ((..(anx + ap-1)x + ap_2)x + ... + a2)x + a1)x + ag (159)
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