Exercises Week 5

Chapter 4: Symmetry in Quantum Mechanics

I. PROBLEM 4.2

(a)

$$
\begin{aligned}
\mathcal{T}(\mathbf{d}) \mathcal{T}\left(\mathbf{d}^{\prime}\right)|\psi\rangle & =\int d^{3} r \mathcal{T}(\mathbf{d}) \mathcal{T}\left(\mathbf{d}^{\prime}\right)|\mathbf{r}\rangle\langle\mathbf{r} \mid \psi\rangle \\
& =\int d^{3} r\left|\mathbf{r}+\mathbf{d}^{\prime}+\mathbf{d}\right\rangle\langle\mathbf{r} \mid \psi\rangle
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{T}\left(\mathbf{d}^{\prime}\right) \mathcal{T}(\mathbf{d})|\psi\rangle & =\int d^{3} r \mathcal{T}\left(\mathbf{d}^{\prime}\right) \mathcal{T}(\mathbf{d})|\mathbf{r}\rangle\langle\mathbf{r} \mid \psi\rangle \\
& =\int d^{3} r\left|\mathbf{r}+\mathbf{d}^{\prime}+\mathbf{d}\right\rangle\langle\mathbf{r} \mid \psi\rangle
\end{aligned}
$$

This implies

$$
\left[\mathcal{T}(\mathbf{d}), \mathcal{T}\left(\mathbf{d}^{\prime}\right)\right]=0
$$

(b) $\mathcal{D}(\hat{\mathbf{n}}, \phi)$ and $\mathcal{D}\left(\hat{\mathbf{n}}^{\prime}, \phi^{\prime}\right)$ do not commute in general. For example, a rotation about the x-axis followed by a rotation about the y-axis gives a different result when the order of the rotations is reversed.
(c) $\mathcal{T}(\mathbf{d})$ and π do not commute:

$$
\begin{aligned}
& \mathcal{T}(\mathbf{d}) \pi|\mathbf{r}\rangle=\mathcal{T}(\mathbf{d})|-\mathbf{r}\rangle=|-\mathbf{r}+\mathbf{d}\rangle \\
& \pi \mathcal{T}(\mathbf{d})|\mathbf{r}\rangle=\pi|\mathbf{r}+\mathbf{d}\rangle=|-\mathbf{r}-\mathbf{d}\rangle
\end{aligned}
$$

(d) $\mathcal{D}(\hat{\mathbf{n}}, \phi)$ and π commute:

$$
\begin{aligned}
& \pi \mathcal{D}(R) \psi(\mathbf{r})=\pi \psi\left(R^{-1} \mathbf{r}\right)=\psi\left(-R^{-1} \mathbf{r}\right) \\
& \mathcal{D}(R) \pi \psi(\mathbf{r})=\mathcal{D}(R) \psi(-\mathbf{r})=\psi\left(-R^{-1} \mathbf{r}\right)
\end{aligned}
$$

II. PROBLEM 4.3

$$
(A B+B A) \psi=(a b+b a) \psi=0 .
$$

This means that either a or b is zero or both are zero. The momentum and parity operator anticommute so that momentum eigenstate is usually not parity eigenstate. The only possibility for having a common eigenstate is when the momentum is zero.

III. PROBLEM 4.4

(a) The spin-angular function is given in (3.8.64) p229 (Sakurai)

$$
\begin{align*}
y_{l}^{j=l \pm \frac{1}{2}, m} & = \pm \sqrt{\frac{l \pm m+1 / 2}{2 l+1}} Y_{l}^{m-\frac{1}{2}}(\theta, \varphi) \chi_{+} \\
& +\sqrt{\frac{l \mp m+1 / 2}{2 l+1}} Y_{l}^{m+\frac{1}{2}}(\theta, \varphi) \chi_{-} \\
& =\frac{1}{\sqrt{2 l+1}}\binom{ \pm \sqrt{l \pm m+1 / 2} Y_{l}^{m-\frac{1}{2}}(\theta, \varphi)}{\sqrt{l \mp m+1 / 2} Y_{l}^{m+\frac{1}{2}}(\theta, \varphi)} . \tag{1}
\end{align*}
$$

It is evident that it is an eigenfunction of $\mathbf{L}^{2}, \mathbf{S}^{2}, \mathbf{J}^{2}$, and J_{z}. Here, $\mathbf{J}=\mathbf{L}+\mathbf{S}$.
For $l=0, j=1 / 2, m=1 / 2$, we have

$$
y_{0}^{j=\frac{1}{2}, m=1 / 2}=\frac{1}{\sqrt{4 \pi}}\binom{1}{0} .
$$

(b)

$$
\begin{aligned}
(\sigma \cdot \mathbf{x}) y_{0}^{j=\frac{1}{2}, m=1 / 2} & =\left(x \sigma_{x}+y \sigma_{y}+z \sigma_{z}\right) y_{0}^{j=\frac{1}{2}, m=1 / 2} \\
& =\frac{1}{\sqrt{4 \pi}}\left(\begin{array}{cc}
z & x-i y \\
x+i y & -z
\end{array}\right)\binom{1}{0} \\
& =\frac{1}{\sqrt{4 \pi}}\binom{z}{x+i y} .
\end{aligned}
$$

Using

$$
x / r=\sin \theta \cos \varphi, \quad y / r=\sin \theta \sin \varphi, z / r=\cos \theta
$$

we find

$$
(\sigma \cdot \mathbf{x}) y_{0}^{j=\frac{1}{2}, m=1 / 2}=\frac{r}{\sqrt{4 \pi}}\binom{\cos \theta}{\sin \theta e^{i \varphi}}=-r\binom{-\frac{1}{\sqrt{3}} Y_{1,0}}{\sqrt{\frac{2}{3}} Y_{1,1}}
$$

Comparison with the spin function gives

$$
m=\frac{1}{2}, l=1 .
$$

Taking the lower sign in (1) gives

$$
(\sigma \cdot \mathbf{x}) y_{0}^{j=\frac{1}{2}, m=1 / 2}=-\frac{r}{\sqrt{3}}\binom{-\sqrt{1-1 / 2+1 / 2} Y_{1,0}}{\sqrt{1+1 / 2+1 / 2} Y_{1,1}}=-r y_{l=1}^{j=\frac{1}{2}, m=\frac{1}{2}}
$$

The effect of $(\sigma \cdot \mathbf{x})$ is to change $l=0 \rightarrow 1$ keeping j and m unchanged.
(c) $(\sigma \cdot \mathbf{x})$ is a (pseudo) scalar or a spherical tensor of rank zero so that it cannot change the total j and m. Under space inversion $(\sigma \cdot \mathbf{x})$ is odd so it connects even $(l=0)$ and odd parity $(l=1)$.

IV. PROBLEM 4.5

A parity-violating potential between the atomic electron and the nucleus is given by

$$
V=\lambda[\delta(\mathbf{x}) \mathbf{S} \cdot \mathbf{p}+\mathbf{S} \cdot \mathbf{p} \delta(\mathbf{x})]
$$

where \mathbf{S} and \mathbf{p} are the spin and momentum operators of the electron. This potential is a (pseudo) scalar, which, as in the Problem 4, connects even and odd l but cannot change j and m.

From first-order perturbation theory

$$
C_{n^{\prime} l^{\prime} j^{\prime} m^{\prime}}=\frac{\left\langle n^{\prime}, l^{\prime}, j^{\prime}, m^{\prime}\right| V|n, l, j, m\rangle}{E_{n l j}-E_{n^{\prime} l^{\prime} j^{\prime}}}
$$

where $l^{\prime}=l \pm 1, m^{\prime}=m, j^{\prime}=j$. The wavefunction for $|n, l, j, m\rangle$ can be written as

$$
\langle\mathbf{r} \mid n, l, j, m\rangle=R_{n l j}(r) y_{l}^{j=l \pm \frac{1}{2}, m}(\theta, \varphi) .
$$

$$
\begin{aligned}
& \left\langle n^{\prime}, l^{\prime}, j^{\prime}, m^{\prime}\right| V|n, l, j, m\rangle \\
& =\lambda \int d^{3} r R_{n^{\prime}, l^{\prime}, j^{\prime}}(r) y_{l^{\prime}}^{j^{\prime}=l^{\prime} \pm \frac{1}{2}, m^{\prime}}(\theta, \varphi)[\delta(\mathbf{x}) \mathbf{S} \cdot \mathbf{p}+\mathbf{S} \cdot \mathbf{p} \delta(\mathbf{x})] R_{n l j}(r) y_{l}^{j=l \pm \frac{1}{2}, m}(\theta, \varphi) .
\end{aligned}
$$

Evidently the matrix element vanishes unless $R_{n l j}$ and $R_{n^{\prime}, l^{\prime}, j^{\prime}}$ are finite at the origin.

V. PROBLEM 4.7

(a)

$$
\begin{aligned}
\psi(\mathbf{x}, t) & =\exp [i(\mathbf{k} \cdot \mathbf{x}-\omega t] \\
\psi^{*}(\mathbf{x},-t) & =\exp [-i(\mathbf{k} \cdot \mathbf{x}+\omega t] \\
& =\exp [i(-\mathbf{k} \cdot \mathbf{x}-\omega t]
\end{aligned}
$$

i.e., the momentum direction is reversed.
(b) The eigenstate of $\sigma \cdot \hat{\mathbf{n}}$ with eigenvalue +1 is, from (3.2.52) p172 (Sakurai)

$$
\chi_{+}(\hat{\mathbf{n}})=\binom{\cos \frac{\beta}{2} e^{-i \alpha / 2}}{\sin \frac{\beta}{2} e^{i \alpha / 2}}
$$

where α and β are the azimuthal and polar angle characterising $\hat{\mathbf{n}}$.

$$
-i \sigma_{y} \chi_{+}^{*}(\hat{\mathbf{n}})=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{\cos \frac{\beta}{2} e^{i \alpha / 2}}{\sin \frac{\beta}{2} e^{-i \alpha / 2}}=\binom{-\sin \frac{\beta}{2} e^{-i \alpha / 2}}{\cos \frac{\beta}{2} e^{i \alpha / 2}} .
$$

This corresponds state can be obtained by

$$
\begin{aligned}
& \alpha \rightarrow \alpha+\pi \\
& \beta \rightarrow \pi-\beta
\end{aligned}
$$

in $\chi_{+}(\hat{\mathbf{n}})$, which rotates the spin up state $\chi_{+}(\hat{\mathbf{n}})$ into a spin down state.

VI. PROBLEM 4.8

(a) The proof can be found in the textbook.
(b) Because $\exp (-i \mathbf{p} \cdot \mathbf{x})$ is degenerate to $\exp (i \mathbf{p} \cdot \mathbf{x})$.

VII. PROBLEM 4.9

$$
\begin{aligned}
\theta|\alpha\rangle & =\int d^{3} p \theta|p\rangle\langle p \mid \alpha\rangle \\
& =\int d^{3} p\langle p \mid \alpha\rangle^{*} \theta|p\rangle \\
& =\int d^{3} p\langle p \mid \alpha\rangle^{*}|-p\rangle \\
& =\int d^{3} p\langle-p \mid \alpha\rangle^{*}|p\rangle .
\end{aligned}
$$

Therefore

$$
\langle p| \theta|\alpha\rangle=\langle-p \mid \alpha\rangle^{*}=\phi^{*}(-p)
$$

VIII. PROBLEM 4.12

The Hamiltonian of a spin one system is

$$
H=A S_{z}^{2}+B\left(S_{x}^{2}-S_{y}^{2}\right)
$$

From (3.5.41 p196 Sakurai) we can construct

$$
S_{x}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad S_{y}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right), \quad S_{z}=\hbar\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

The Hamiltonian is then

$$
H=\hbar^{2}\left(\begin{array}{ccc}
A & 0 & B \\
0 & 0 & 0 \\
B & 0 & A
\end{array}\right)
$$

The block matrix that need to be diagonalised is

$$
\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right)
$$

The eigenvalues are

$$
E=\hbar^{2}(A \pm B) \text { and } 0
$$

and the corresponding eigenvectors are

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}(|1,1\rangle+|1,-1\rangle) \\
& \frac{1}{\sqrt{2}}(|1,1\rangle-|1,-1\rangle) \\
& |1,0\rangle
\end{aligned}
$$

To see if the Hamiltonian is invariant under time reversal, we assume that A and B are real.

$$
\Theta H \Theta^{-1}=A \Theta S_{z} \Theta^{-1} \Theta S_{z} \Theta^{-1}+B\left(\Theta S_{x} \Theta^{-1} \Theta S_{x} \Theta^{-1}-\Theta S_{y} \Theta^{-1} \Theta S_{y} \Theta^{-1}\right) .
$$

Since (4.4.53 293 Sakurai)

$$
\Theta \mathbf{J} \Theta^{-1}=-\mathbf{J}
$$

we obtain

$$
\Theta H \Theta^{-1}=A\left(-S_{z}\right)^{2}+B\left[\left(-S_{x}\right)^{2}-\left(-S_{y}\right)^{2}\right]=H
$$

i.e., the Hamiltonian is invariant under time reversal.

From

$$
\Theta|j, m\rangle=(-1)^{m}|j,-m\rangle
$$

we find

$$
\begin{aligned}
\Theta(|1,1\rangle+|1,-1\rangle) & =-(|1,1\rangle+|1,-1\rangle) \quad \text { (odd) } \\
\Theta(|1,1\rangle-|1,-1\rangle) & =+(|1,1\rangle-|1,-1\rangle) \quad \text { (even), } \\
\Theta|1,0\rangle & =+|1,0\rangle \quad \text { (even). }
\end{aligned}
$$

