Numerical Methods for Differential Equations FMNN10/NUMN12
Repeat exam 2013-04-06 Results to be announced 2013-04-13
Solution sketch by Gustaf Stderlind

FExam duration 08:00 — 13:00. A minimum of 15 points out of 30 are required
to pass. Your grade is determined by the sum of your exam and project
scores, in accordance with the rules on the course home page.

No computers, pocket calculators, cell phones, browsing tablets or any other
electronic devices, and no textbooks, lecture notes or written material, may
be used during the exam.

1. (4p) The special second order initial value problem § = f(y) with
initial conditions y(0) = yo and (0) = go models many problems in
mechanics, e.g. planetary or satellite orbits. We are going to construct
a method of the form

Yn — 2Yns1 + Unt2 = h2 (ﬁ(]f(yn) + ﬁlf(yn+1) =+ ;62f(yn+2)) .

{a) Determine the coefficients f; so that the order of consistency is
maximal, What is the maximal order? (3p)

Is the method explicit or implicit? (1p)

2. (6p) Consider an implicit Runge-Kutta method with Butcher tableau

0 0
1/3 2/3

(a) Write the formulas associated with this method. (1p)
(b) Find the stability function R(hA). (3p)
(c) Is the method A-stable? (2p)

3. (6p) Consider the following nonlinear two-point boundary value prob-
lem:

¥ — 2y + = g(2)
y(0) = «, y(1) =4



(a) Introduce a suitable grid and discretize with a standard second
order method. Give all details about the grid (number of grid
points and their location, as well as mesh width Az) and formu-
late the discretization. Include the boundary conditions in the
equation system. (4p)

(b) Construct the Jacobian matrix associated with the system. (2p)

4. (4p) In the course we have studied numerical methods for Sturm-
Liouville eigenvalue problems, One special type of such problems has
the form

v +d@)y =y

with boundary conditions ¢(0) = y(1) = 0, and the function d(z) > 0
on [0,1]. Formulate this as an algebraic eigenvalue problem
Ay = AazY.

by using a second order diseretization. Take care to treat the function
d(x) properly, and give the matrix A.

@(Sp) Consider the linear convection—diffusion equation

Ut = Ugg + Uz,

with homogeneous boundary conditions, and initial condition ©(0, z) =
9(z).
(a) Introduce a suitable notation and write down a standard 2nd

order method-of-lines discretization in space combined with the
trapezoidal rule for time-stepping (“Crank—Nicolson’s method”).
(3p)

(b) As the method is implicit, one will have to solve a linear system of
equations on each step, Write down this system in matrix—vector
form. (2p)

6. (5p) The Lax—Friedrichs scheme for the advection problem with a > 0,

wtau, =0 0<z2<l, t>0,
u(z, 0) = ¢o(a),
is
uith = (ufyy +uf)/2 - bWy — ufy)/(20%).

Consider this problem for periodic boundary conditions, u(t, 0) = u(¢, 1).




(a) Let p = At/Ax and write the resulting recursion in matrix—vector

form,
+1
urtt =T,ut v

with U" = {u},u}, ..., u}]T. What are the matrix T}, the initial
condition U° and the vector V™7 take care to define Az in terms
of N, the number of equations in the recursion. (3p)

(b) What is the CFL condition for this method? (No derivation is
required.) (1p)

(¢) Draw the computational stencil (“berikningsmolekyl”) for the method.
(ip)

LycKa TILL!
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Numerical Methods for Differential Equations FMNN10/NUMN12
Final exam 2012-12-19 Results to be announced 2012-12-22

Exam duration 08:00 — 13:00. A mininmum of 15 points out of 30 are required
to pass. Your grade is determined by the sum of your exam and project
scores, in accordance with the rules on ths course home page.

No computers, pocket calculators, cell phones, browsing tablets or any other
electronic devices, and no textbooks, lecture notes or written material, may
be used during the exam.

1. (5p) The two-step “difference corrected BDF method” for the initial
value problem ¥’ = f(y); ¥(0) = yo can be written

V5 Jum = (1= 7V7) Af ()
where V is the backward difference operator, and v is a constant (to
be determined below).

(a) Rewrite the formula as aoyn + ai¥n—1 + QoYn—2 = hfa2f{yn} +
kB flyn-1) + hfef(yn—2). Determine the coefficients a; and §;.
Express the latter in terms of 4. (2p)

(b) Show that the method is zero-stable (convergent) for every 4. {Ip)

(c) For v = 0 the method reduces to the standard two-step BDF
method of order p = 2. Determine a nonzero value for - such
that the method has order of consistency p = 3. (Hint: note
that yV2P/(t) = 0 if P' is a polynomial of degree at most 1; this
means that the order is p > 2 for every «, and that it is sufficient
to consider polynomials P of degree 3 to determine +.) (2p)

2. (5p) The # method reads

Yn+1 = Yu -+ h(Bf(yn) + (1 - g)f(yn-‘rl))'

The method was tested numerically, with three different values of 8,
solving a moderately stiff problem with constant stepsize h.

(a) Give the names and orders of the methods for ¢ =0, 1/2, 1 and
draw their respective stability regions. (2p)

{b) In the plots below, identify which method (what value of 8) cor-
responds to each plot, and motivate your answer carefully giving
some thecoretical argument in each case. The plots show the ab-
solute error at the endpoint vs. the stepsize h. (3p)
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. (6p) Construct a 2nd order discretization for the nonlinear two-point
boundary value problem

¥+ () +y = sinwz
y(0) =1, y'(1) = 2.

Introduce a grid and give all details of how you have constructed it
by making a clear drawing, including defining the number of equations
as well as Ax. Write down the resulting equation system, including
the boundary conditions. Simplify as far as possible, keeping only the
unknowns in the left-hand side. '

. (4p) In Euler buckling of a beam of length L under an axial load P,
the deflection u of the beam’s center line is given by the equation

y_ P
EI 7
with various boundary conditions depending on which buckling case

is considered, and where ETI is the product of Young’s modulus of
elasticity &' and the beam’s cross-sectional moment of inertia I.

(7

Here we shall consider the first two cases

(1) W(0)=0, w(L)=0




and
(2) u(0) = 0, u(l) =0.

Construct the linear algebraic eigenvalue problem that results from
a second order discretization of this problem. In particular, give the
matrix for each buckling case, and show clearly what the difference
is between the matrices in the two cases, i.e., how are the matrix el-
ements affected by changing the boundary conditions, and how are
the matrix dimensions or other defining properties of the eigenvalue
problem affected?

5. (5p) Consider the following PDEs for ¢ > 0 and z € [0, 1]:

(2) s =d uge + flu)
(b) e+ L (2)a =0

(c) mta-uz=d g
(d) up = ¢ uzq

(8) ut + utty = tzy

For cach of the cases above, give the name of the equation and classify
it as elliptic, parabolic or hyperbolic.

6. (5p) Consider the Klein—-Gordon equation
Ut = Ugz — U,

with periodic boundary conditions w(¢,0) = wu(¢,1) and w.(¢,0) =
z(f, 1), and initial condition u(0,z) = sin? 2xz,

(a) Introduce a suitable grid (make a drawing) and clarify at what
points you solve for the unknowns, as well as how the number of
unknowns, VV, is related to Az. Write down a standard symmetric
2nd order discretization in space, and state the resulting method-
of-lines ordinary differential equation in vector-matrix form. {(3p)

(b) Combine with an explicit symmetric discretization of g in time,
to get an explicit two-step, 2nd order method for time-stepping,
and write down the full discretization. Also give the structure of
the CFL condition in the form At/Az? < C, where you only have
to give the value of p. (2p) )

Lycka TILL — Goob Luck! G.8.

Gop JuL — MERRY CHRISTMAS — JOYEUX NOBL — FELIZ NAVIDAD —
FROHLICHE WEIHNACHTEN — BUON NATALE — BON NADAL
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CHTENTA 2. .

Numerical Methods for Differential Equations FMNN10, 091218
Solution sketch by Gustaf Séderlind

Exam duration 08:00 — 13:00. A minimum of 15 points out of 30 are required
to pass. Your grade is determined by the sum of your exam and project
scores, in accordance with the rules on the course home page.

No coraputers, pocket calculators, textbooks, lecture notes or any other elec-
tronic or written material may be used during the exam. ‘

1. (5p) For the initial value problem g = F(y) the ezplicit midpoint
method reads :
Untt — Yn-1— 241 f(yn)-

(a) Find the method’s order of consistency. (2p)
(b) Show that the method is zero-stable. (1p)

(¢) Apply the method to the linear test equation g = Ay and -show
that both roots of the characteristic equation must have exactly
unit modulus {absolute value 1) for the method to be stable. (2p)

Solution. For the order of consistency, we try whether the formula
holds for y(¢) = # and f(y) = ptP~! and take 31 = —AL ¢, =0,
and t,.1 = At For p=0:3 we get

1-1 = 2At-0
At—(—At) = 2At-1
£ — (~At® = 2At-2-0
B —(—AD® # 2At-3-0%

The formula holds for p = 0,1 and 2, but breaks down for p = 3 so the
order of consistency is p — 2.

For zero-stability, let f() = 0. The difference equation yp+1—Yn-1 =0
has characteristic equation 22 — 1 = 0 with roots z = &1. They are
simple, and since {z| < 1 the method is zero stable.

The linear test equation gives Ypt+1 — 288y, — Yn1 = 0 with char-
acteristic equation z? — 2A¢Az — 1 = 0. The product of the two roots

is 2120 = —1. Thus, if one root is smaller than one in magnitude,
the other is greater than one. The only pOSSIblhty is that both have
*modulus 1.



2. (5p) Consider the 3-stage Runge-Kutta method with Butcher tableau

0|0 0 0
1/2(1/2 0o 0
1 {1/4. 3/4 0

| & 1-2a o

(a) Find its stability function R{(kA). (3p)
(b) For what value of a is the method of order 37 (1p)
(c) Is the method A-stable? (1p)

Solution. For the linear test equation we get

RY: = hX-y,
hYs B - (yn +BY1/2) = BA- (1 +BA/2) -
hYs RA - (Y + BY1/4 + 3hY3/4) =
= hA- (1 +RN4 4+ 3RN4 4 3(RN?/8) -y
Yot = Yo +a(hY; +AY3) + (1 — 20)hYs =
= (L+hA+ (RN /24 3a(BA)?/8) - yn
hAY  3alh))?
( 2) . (8 ) :

li

R(hA) = 14+hA+

o the method is of order p = 3 for o = 4/9, which makes the last term
equal to {hA)*/6. Since the method is explicit, the stability function
is a polynomial; therefore the method cannot be A-stable.

3. (8p) Three students, the Good, the Bad and the Ugly, try to solve an
eigenvalue problem «” = Au with a Dirichlet condition w(0) =0 and a
Neumann condition 4/(1) = 0, and are trying hard to get second order
accuracy as Az — 0. They try their programs, obtaining different
approximations to the eigenvalue near —7? /4.

The Good Student uses an N x N matrix

with Az = 1/(NV + 1/2).

The Bad Student, on the ather hand, claims that convergence “has
nothing fo do with how you define Az as it varies and tends to zero
anyway,” and uses the same N x N matrix as the Good Student, except
for putting Az = 1/(N + 1),“as usual” in his program.




While the Good and the Bad are disputing the importance of Az, the
Ugly Student unexpectedly enters, telling the Bad Student:

“There are two kinds of students, my friend. Those who took the course
FMNN10, and those who talk. You talk.”

But if the Bad really insists on using Az = 1/(N +1), the Ugly can fix
the program for him to achieve second order. The Ugly Student sets
out to do this and changes the program in fwo places. First, he redefines
the matrix to be (N + 1) x (N + 1), while keeping Az = 1/(N +1),
and second, he changes the last row of the matrix so that it reads -

-2 1 ... ©
1 1 -2 1
TA$ = sz ]
2 =2
The graphs of the error when the three students’ codes were run are
shown in Figure 3, possibly but not necessarily in order.

{a) Give a simple argument to indicate which student may have ob-
tained what graph. (2p)

(b) Explain how the Ugly Student obtains 2nd order. {(3p)

Solution. The Good Student uses standard procedure to represent
the Neumann boundary condition to 2nd order. Using the same matrix
as the Good Student, the Bad Student has the wrong step size, and
produced the middle graph, which is only lst order. The other two
show 2nd order convergence.

One cannot tell whether the Good produced the top graph and the

Ugly the one at the bottom, or the other way around. Either way, the
Ugly Student got away with 2nd order, sneering at the Bad Student:

“Uf you need 2nd order, make it Ond order. Don’t talk.”

How did the Ugly Student do it? He uses a standard grid with N
internal points and Az = 1/(N + 1), so he also has to solve for un 1
at zy41 = 1. That means he needs an (N + 1) x (N + 1) matrix, and
explains why he changed the dimension of the matrix.
He then represented the Neumann condition to 2nd order at oy 41 = 1,
by using the approximation
UNy2 T UN

2Az
implying that uyya = uy. Upon inserting this into his last equation,

/(1) =

un — 2unp1 T UN12
Az?

= Mun1

3
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Figure 1: Error, as a function of Az, in the determination of the eigenvalue
near —2/4 for three methods, devised by three different students. Note that
vertical scales are different in the graphs.




he gets the last row

Q‘LLN = 2uN+1

A = AUN+1-

This completes his method.

. (56p) In order to determine the shape of a circular drum skin’s oscilla-
tions, one needs to solve the Bessel equation

with boundary conditions #'(0) = 0, u(R) = 0, where R is the radius
of the drum,

Construct a second order discretization of this problem to formulate it
as a linear algebraic eigenvalue problem. Include all important details
on grid point locatiens, mesh size Az, boundary conditions etc., so
that the problem is ready for programming. For full credit, the method
must be 2nd order accurate.

Solution. A grid with N internal points and Az = R/(N + 1/2)
with grid points located at z = Az/2 + (k— DAz for k=1: N is
constructed. Note that one cannot have a grid point at x = 0 because
the second term of the differential equation is divided by x. Further,
note that the Neumann condition at @ = 0 only makes that natural.

We discretize with symmetric finite differences:

Cup—2us tuy Ut us Aot
Ax? 20 Az Astil
g1~ 2up Uy T Uk-1 T Uy Aautli
Ax? 2z Az i
UN-1 — 2uN + Uyl —UN—1 P UNGL
_ 5 . — AA:EUN'
Az 2en Az

Next, we insert the boundary conditions, uyy1 = 0 and ug = vy, the
latter being a 2nd order approximation to the Neumann condition at
the origin. This gives the final system,

—2uy + 2uy N
T AR Azl
T 1 i e W e B s = W
Ag? O om Az T Adclk
_TLN_'l — 2un e Y
Ax? 2enAz AzUN,

where, in the first equation, we have used the fact that z; = Ax/2,
and o — u; before collecting terms. Noting that 2z = (2k — 1)Az,



we can also write it in tridiagonal matrix form, Aazu = Aagu, where
Apy is the drumskin matriz

2 -2/1 . 0
L | s 2 —4/3
— —4/5 2 —6/5
AA:I: _ ”A‘:—CE ) / . . /
: . 2N.—2
0o .. —2N-2 g

. (bp) For ¢t > 0 and = € [0, 1], write down the following PDEs:

(a) Reaction-diffusion equation
(b) Advection equation

(¢} Convection-diffusion equation
(d) Viscous Burgers equation

(e) Wave equation

For each equation, state whether the problem is elliptic, parabolic or

hyperbolic, and, assuming that an explicit time stepping method is
used, give the CFL condition in the form At/AaP < C that will be
necessary for stability and convergence. (You only have to give the
power p, not the value of the constant C.)

Solution. The (sample) equations are

{a) 1 == gy + f(u); parabolic; p = 2
{b) u¢+ ugy = 0; hyperbolic; p=1
(¢} g+ Uz = Ugy; parabolic; p = 2
(d) u + wu; = Uz, parabolic; p=2
(€) tg = uzg; hyperbolic; p=1

. {Bp) The Lax TFriedrichs scheme for the advection problem with a > 0
and periodic boundary conditions,

utau =0, 0<azg<l, ¢t>0,
u(z,0) = do(z),

u;.htl = (u;.ljrl -+ 15?71)/2 - a_At(u;,?;,rl - u?ul)/(2AT)

(a} Let p = At/Az. Rewrite this scheme as a matrix—vector recur-
sion UMt = T,U™ + V™ with U™ = [uf,u},...,u}]T, giving the
matrix T, and the vector V™. Is the matrix symmetric, skew-
symmetric, unsymmetric, circulant, or of some other type? (3p)



(b) Draw the computational stencil (“beréikningsmolekyl”) for the Lax-
Triedrichs method with p = 1/a, inserting the correct values that
correspond to the particular choice of i above. Is the method an
upwind or a downwind method for this value of u? (2p)

Solution. Let ay = (1 + ap)/2 and a— = (1 — ap)/2. Then

0 a_ . a4
Un-{-l — at+ it a- Ur = T#Un,
Q.. ... (28 G-

where the element a_ goes on the superdiagonal and in the lower left
corner, and a4 goes on the subdiagonal and the upper right corner. The
vector V'™ = 0 is not present due to the periodic boundary conditions.
The matrix T}, is a circulant matriz. The initial condition is

U_;? = (,150(333').
Putting p = 1/a implies
1 n
i = (U uf)/2 - (U - uia)/2 = ug

which is an upwind method. We can write it in matrix-vector from as

0 1

10

Un-l—l — Un’
1 0

where we see that Ty, is a cyclic permutation matriz. For this value,

the method solves the scalar advection equation exactly, as it merely
transports information along the characteristics. :

LYCKA TILL — Goop LUck! G.S.
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&3 NVA 227

Numerical Methods for Differential Equations FMNN10 /NUMNI12
Final exam 2010-12-14 Grades to be announced 2010-12-21
Solution sketch by Gustaf Séderlind

Exam duration 08:00 — 13:00. A minimum of 15 points out of 30 are required’
. to pass. Your grade is determined by the sum of your exam and project
scores, in accordance with the rules on the course home page.

No compnters, pocket calculators, textbooks, lecture notes or any other clec-
tronic or written material may be used during the exam.

1. (5p) For the initial value problem ¢ = f (y) the 2-step BDF method
reads

v2
(v + _5) Yn = - f(yn)ﬁ
where ¥ is the backward difference operator.

(a) Find the method’s order of consistency. (2p)
(b) Show that the method is zero-stable. (1p)

(c) Construct the nonlinear equation that has to be solved on each
step to use the method. What method should be used to solve
this equation? (2p)

Solution. Using Vy, = ¥n — Yn—1 and vgyn = Yn — 2Un—1tYn—2, the
method can be written

3 1
Eyn — 2yp.1 + 5'9’:’»72 =h- f(yn)

To find the order of consistency, we insert the polynomials ¢™ for m =
0,1,2,.... Starting with P(t) =1, P'(¥) =0, we get
3 1
LHS:§—2+§:O; RHS=hH-0=0,

implying that the formula holds for m = 0. For P{t) = {™, with
Pt) = mt™ !, we get

LHS = g - (2R)™ —2-h”‘+% O = (3.2 - 2)R™
RES = h - 7n(2h)m—1 — mzmﬂlhm,
so LHS equals RHS for m = 1 and m = 2, but fails for m = 3.
Therefore the order of consistency is p = 2.
For zero-stability, we consider the characteristic equation
3 5 1

“2'“21 —2z+§:0.



The characteristic polynomial can be factorized

21~ 3)

showing that apart from the mandatory unit root, the only other root
is 1/3, inside the unit circle. Hence the root condition is satisfied and
the method is zero-stable.

In advancing the solution one step, given y,_1 and ¥,_9. we have to
solve the (nonlinear) equation

1
¥n—2,

3
S¥n — hf(yn) = 2yn_1 — 5

2
for the unknown y, (present in the left-hand side), while the data
(known, past values) appear in the right-hand side. The cquation
should be solved using Newton’s method, as the BDF methods are
intended for stiff differential equations.

. (5p) Consider the 2-stage implicit Runge-Kutta method with Butcher
tableau

6] 0 0
111-¢6 @
1—-6 ¢

(a) Find its stability function R(hA). (3p)
{b) For what values of # is the method A-stable? (2p)
Solution. We apply the method to the linear test equation ¥’ = Ay
with initial condition yg = 1. We get
hY{ = hA
hYy =hX- (1+(1—0)hY] + OrYy)

Here we have to solve (1 — 0h\) - hYS == RA - (1 4+ (1 — 8) - R)) for the
(scaled) stage derivative hYy, to get

RA-(1+(1-06)-hA)
1— 0\

B =
Therefore,

yi=1+(1-6) hY{+0- hY’
_ (1= 0RX) + (1 GRA)(L — O)hA + OhA - (14 (L= 0)- k)
T—0hA

= R(h).

14+ (1 - 8)RhA
T, 1= 0hA




This is the  method. For § = 0 we have the explicit Euler method
(not A-stable); for 8 = 1/2 the Trapezoidal rule {A-stable); and for
¢ = 1 we have the implicit Euler method (also A-stable).

When 0 < # < 1, for large hA we have

Lm0 19

RN > =52 = =5

which is less than or equal to 1in magnitude ifandonty if 1/2 <8 < 1.
Hence the method is A-stable for 1/2 <8 < 1.

. (6p) The three students, the Good, the Bad and the Ugly, are
back in the computer lab this year too, now trying to solve the beam
cquation, M” = g; u” = M/{EI), with boundary conditions M (0) =
M(10) = 0 and u(0) = u(10) = 0, using three different methods.

In order to solve any equation of the form g = f with homogeneous
boundary conditions, they all use methods of the form Tazy = Bf,
. where the N x N matrix Ta, is given by

-2 1 ... 0
1 -2t
Ax2 .

|- 1 -2

TAs =

and Az = 10/(N +1). They cannot agree on the matrix B, however.

The Good Student uses the Finite Difference Method (FDM) and
takes Bppy = I, the identity matrix. The Bad Student, on the
other hand, prefers the Finite Element Method (FE’\/I) with piecewise
linear elements, and takes

o

/1

Brpy = i

While they are disputing the advantages and disadvantages of their
methods, the Ugly Student unexpectedly enters, and says that both
FDM aund FEM are 2nd order methods, and that if one is geing to
use the B matrix at all, one had better use it to increase the order of
the method. Keeping it a secret that he has found an interesting 4th
order method known as Cowell’s method in a book, the Ugly student
smiles mysteriously and tells the Good and the Bad that according to
Aristotle, the best is usually found between the extremes. Thus he



FOM FEM Cowaell
T T T

107* 10 1077
10 | B 107 | . 107 |
10 | - 107 1 - 107° -
<] ~10 =] -10 ‘g‘ —i0
g 107" T B 10T 1 B w0
107" g 10771 4 10721
10 "%} 1 107 g M
107 s 107 1 107 !
10 1072 107 10° 107 1072
dealta x delta x delta x

Figure 1: Error, as a function of Az, in the computation of the deflection of
a beam for three different methods, devised by three different students

proposes a compromise, instead choosing B as follows:

101 ... 0
1 10 1

I 1
BCowell - '2”(BFDM + BFEM) = I_é.

This means that the problem %" = f is discretized as

Yot =2 4 Ynt1  foo1 £1065 + fria (1)
Az? 12 )
The Ugly claims that this will produce far superior accuracy. As the
Good and the Bad don't believe him, they all agree on a simple test
problem with g constant, with all other parameters F and I also con-
stant, and find the analytical solution

aq 3 4
= —— (1000 — 20z 1.
u(z) 24EI( 2 z* + zt)
They decide to compute and plot the error for different Az for their
respective methods. The graphs of the error when the three students’
codes were run are shown in Figure 1.



(a) Show that the Ugly student’s method is at least p = 4 by inves-
tigating the discretization (1). (4p)

(b} Explain the unusual behavior of the Ugly student’s error graph
{see Figure 1) and why one doesn’t observe a 4th order slope,
coutrary to expectations. (2p)

Solution. In (1), we insert the exact solution and expand in Taylor
series around 2, to get

y® + 0(Az)

Aﬂ}z y” . A.’an@) + &3)4y(4) . A$5
2! 3! 4! ‘5!

5
A:‘ ¥® + O(Aab).

Y(Tn-1) =y — Azy/ +

Azt

2 " Ag?
ar Y

Az
Y(znt1) =y + Azy' + ——y" +

2 ar ¥ W

®

Therefore

© y(mn1) — 20(20) + ¥(@ns1) ey, Az €Y 4
= —_— Az™).

But the right-hand side also needs to be expanded. Noting that y” = f
(and therefore ¥ = "), we get.

J(@a—1) +10f(@n) + f(@ne1)
12 =7

F@n-1) — 21 (zn) + flwni1)
12

2
= (%) + %y@) + O(AzY),

(2n) -+

so the left and right-hand sides of (1) differ by at most O(Az*), showing
that the method’s order of consistency is at least p = 4. (In fact, it is
p=4)

As a simpler alternative, one can verify that the discretization formula
holds exactly for polynomials up to degree 4.

The unusual behavior of the error graph is due to the fact that the
test problem’s solution is a polynomial of degree 4. Being of order
p = 4, Cowell’s method solves all such problems exactly, leaving only
round-off errors ~ 1078, A 4th order slope will only be observed for
more general problems.

. (4p) A special type of Sturm-Liouville eigenvalue problems has the

form
y" +dla)y = Ay

with boundary conditions /(0) = y(1) = 0, and the function d(z) > 0
on [0,1]. Formulate this as an algebraic eigenvalue problem

Ay = Aagy-

o



by using a second order discretization. Take care to define the grid, the
mesh-width Az, and construct the matrix A. Don’t forget to define
the dimensions of the matrix.

Solution. We take Az = 1/{N +1/2) to take care of the Neummann
boundary condition on the left, which is approximated by

W — 4%
=_— =0,
Az ’

implying that yo = 31. For n =1,..., N our discrete eigenvalue prob-

lem is
Yn—1— 2un + Yn+1

Ag?
Introduce the diagonal matrix D = diag(d{@1) d(z2) ... d{zn)). The
algebraic eigenvalue problem can then be written

+ d('Bn)'yn = /\A$yn-

(TAz + D).U = /\Amy:

where the N x N matrix Ta, is given by

Here the top left matrix element accounts for the Neumann condition
4/ (0) = 0. So the matrix A = Tay + D. This is a simple diagonal
modification to the usual matrix for v = Ay.

. (5p) Fort > O and z € [0,1], let u} approximate u(j-Awz,n-At). Below
you find some simple discretizations of some important prototypical
PDEs. Write down the differential equations corresponding to the
discretiza:cions below, and give the name of the equation in each case.

®) +1
7 Y | n — T Tt
Y e A o S e B £ e
At Az? I
(®) +1
ntl _ ,n n n [
Y T Wt Yia W
At 2 Az
<) +1
ntl _gn o um o oun 4yt no_gn
U; e 2ui +uly, N U — U]

At Az? Az



(@ +1
n n n i3
w; —ud ul -l
J A g

At Az

(e)

n+l _ n n—1 no_ n n
1 2uf +u; _ Yy 2ul +uf
A2 Az?

Solution.
(a) w = Upg + f(u) Reaction-diffusion equation
{b) u; + uuy =0 (Inviscid) Burgers equation
(¢) U = Ugg + 1, Convection-diffusion equation
(d) up +uy = 0 Advection eguation
{e) up = uz; Wave equation
. {5p) The Lax—Friedrichs scheme for the advection problem with ¢ > 0
and periodic boundary conditions,
utau, =0, 0<a<l, t>0,
ufz,0) = ¢o(z),

is
n it
it — it Ty el (ul g —u?_y)
i 2Ag It LY
(a) Let p— At/Az. Rewrite this scheme as a matrix—vector recursion
Ut = T,U" with U = [u}, u?, .. ., up ], giving the matrix 7},

and the vector U, taking care to define Az in accordance with
matrix dimensions. Is the matrix symmetric, skew-symmetric,
nonsymmetric, circulant, Toeplitz, or of some other type? (3p)

(b) Put g = 1/a in the matrix. Calculate its eigenvalues and conclude
that the method is stable. (2p)

Solution. The N x N matrix T, is

0 1—ap 0 T+ap
14au = 0 T —ap

1—ap 0 14+ap 0

It is a circulant matrix (due to the periodic boundary conditions), and
also a Toeplitz matrix. The vector U® = [p(ay), ¢{xs), ... ,ci:(a:;\[)]T,
with z; = j/N.




In case ait = 1 we get the matrix
0 0
10

Tl/a— .
)] 0 1 0

This is a cyclic permutation matrix, with Tf}r . = 1. (After N steps,
the wave has come back to its original position.)
If T/, has eigenvalues A, then Tf}ra has eigenvalues AY. But since

T,

= I, we have A" = 1, implying
)\k:ezﬂik/N; k=1,...,N.

Because all eigenvalues have unit modulus and are simple, the method
is stable.
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Numerical Methods for Differential Equations FMNN10/NUMN12
Final exam 2011-12-12 Grades to be announced 2011-12-21
Solution sketch by Gustaf Stderlind

Exam duration 14:00 — 19:00. A minimum of 15 points out of 30 are required
to pass. Your grade is determined by the sum of your exam and project
scores, in accordance with the rules on the course home page.

No computers, pocket calculators, cell phones, browsing tablets or any other
electronic devices, and no textbooks, lecture notes or written material, may
be used during the exam.

1. (5p) The two-step Adams-Moulton method for ¢ = f(y); (0) = w0
can be written

Vyn = (b{) + biv + bZVQ)hf(yn):

where V is the backward difference operator.

(a) Determine the coeflicients b; so that the method is of consistency
order p = 3. (3p)
(b) Show that the method is zero stable. (1p)

(¢) Asthe method is implicit, we need to solve a nonlinear equation on
each step. Formulate this nonlinear equation, clearly indicating
what variable to solve for. (Ip)

Solution. Rewrite the formula as

Yn — Yn-1— bOhfn + bl(hfn - hfn—-l) + b2(h'fn - thn—l + hfn—Z)
= (bo + b1 + b2} fn — (br + 2B fn1 + bohfr1,
and insert y = P(1), f = P'(¢) for P({) = t™ with ¢, =2h, t,_; = h
and ¢, = 0. For P(t) = 1 and P'(2) — 0 we get the left hand side
1 —1 =0 and the right hand side 0, so the formula holds.

For P(t) =t and P'(t) — 1 we get the left hand side (2h) — (h) = A
and the right hand side
{bo + b1 + ba2)h — (b1 -+ 2b2)h + bah = bgh,

which requires by == 1.
For P(t) = t* and P'(t) = 2t we get the left hand side (2h)% — (h?) =
3h? and the right hand side (using bg = 1)

(1+b1+ba)h-2(2h) — (b1 +2b2)h -2 (R)+ 0

= (4 -} 4by + 4by — 2b; — 4by)R? = (4 + 2b1)h2,



so we get the requirement 4 + 26y = 3, which yields by = —1/2.

Finally, for P(t) = 3 and P'(t) = 3t%, we get the left hand side
(2h)3—(h)® = 7h® and the right hand side (using b = 1 and b = —1/2)

(% +b2)h -3 (2R) — (20 — %)h -'3 (h)? = (% + 6by)h?,

so the left hand and right hand sides are equal if 6by = —1/2, which
gives by = ~1/12.
For zero stability, investigate the differential equation ¢’ = 0. The
method then gives

Yn — Yn—1 =10
with characteristic equation z—1 =.0. There is only one root, at z = 1,
so the root condition is fulfilled and the method is zero stable.

Finally, the method is implicit, and one needs to solve for y, on ev-
cry step. Collecting the unknowns on the left hand side, we get the
equation

Yn — (bﬁ + b1+ bajhfyn) =,

where the vector ¥ only depends on previously computed data. Using
the coefficients above, the equation reads

5
Yn — Ehf('yn) = 1.

2. (bp) Consider the 2-stage implicit RungeKutta method

RY{ = hf(tn, yn)
RYY = hf(ta + By + (RY] + RY3)/2)
Ynt1 = Yn + (hY] + hY3)/2)

(a) Write down the method’s Butcher tableau. {1p)

(b) Find its stability function B{hX) and express it as a rational func-
tion. (2p)
(c) Is the method A-stable? (2p)

Soluation. The Butcher tableau is

ol o o0
1]1/2 1/2
12 1/2

This is the trapezoidal rule. In order to find the stability function, we
consider ¢ = Ay and take one step, starting from yp = 1. We get

Y] = hX

RYY = hX-(1+hA/2+hY5/2),



and solving for hY) gives

1+ hA/2

f_
Wy =TT

Ingerting this into the updating formula gives

hAT1RA/2  11RA2

2 1—hA/2 1-hA/2 R(RA).

yr=11hA/2+

When we look at A-stability, we see that R has no poles in the left
half-plane, and we find

1+ iw/2
I —dw/2

P (w1 —iw/2) _
(- w21 +aw/2)

IR = |

so the method is A-stable.

3. (5p) Construct a second order discretization of the nonlinear two-point
boundary value problem '

v+ -y = f(=)
y(O) =, y,(l) = 6

Introduce a grid and discretize with a standard second order method.
Be careful to explain your notation, and pay special attention to how
the boundary conditions enter the system.

Solution. As we have a Neumann condition at the right, we take
Az = 1/(N + 3) with N internal grid points located at z; = j - Az
for 7 =1 : N. Noting that (zy + zn+1)/2 = 1, we approximate the
boundary condition y'(1) = 8 by

YN4L YN
A;’l} ﬁ)

which gives yny1 = yn -+ BAz. Discretizing the equation, we gef

Y1 — 245 + Y11 Yi—-1 — Yj+1 ) c 1.
At W aRy  w Ml g=1iA

Inserting the boundary values yg = @ and yy41 = yn + BAz into the
first and last equations respectively, we get

o =2y + a— i — f(n
o -5~ = fl@)
yn-1—2yn tyn +BAz  yn1— (yv +BAZ) .
Ao UN AT Y = f(a’N)



Simplifying these equations, moving constant terms to the right hand
side and collecting all unknowns on the left hand side, the complete
second order discretization becomes a nonlinear system of equations,

—2y + a— 1 _ o
At VgAYt = ME) - 5
Yi-1— 21 + Yy Yi—1 — Ui+t .
By R A 7 vt i), =2:N—1
Yn—1 — Yy yni1—yy —BAx B
A2 Un SAD yn = flzn) Ao

. (bp) The Hermite differential equation is a Sturm-Liouville cigenvalue
problem of the form ,
—u” 4 2z’ = D,
where we shall consider the case

u(0) =0, u'(L) = 0.

Construct a second order discretization of this problem, and make sure
fo represent the boundary conditions to 2nd order accuracy., Write
dowmn all details, such as how you have selected your mesh size Az,
where the grid points are located, and how many they are. Finally,
state the linear algebraic cigenvalue problem that results in matrix-
vector form.

Solution, With a Neumann condition at the right, we take Az =
L/(N + %) with NV internal grid points located at z; = 7 - Az for
J =1 : N. Noting that (zy + n+1)/2 = 1, we approximate the
boundary condition /(L) = 0 by

UNt1 —UN -0
A !

implying that ux41 = uyn. Discretizing the equation, we get

Uj—1 = 2y + Uiy Yj—t — Uit ,
— ] R = & L VT =1:N.
Ag? J 2Az J I

Inserting boundary conditions, we get

— e A
_%w%jﬁ + tg = Ay
Uj_i — U + 4 ) '
—= Ajz JH_J'(Uj—l—ujJrl):/\uj; j=2:N-1
T
UN-1 — UN
_W - i\r - ('UI\I_I — uN) — A’ur\‘y’



In matrix-vector form, the system can be written Bazu = Au, where
the tridiagonal matrix Ba, is given by

2 Az? -1 0 0
—1 —2Ag? 2 2Ax% — 1 0
Az ' 0
—1— (N - 1DAg? 2 (N—1)Az?-1
0 —1— NA#? NAz?2 +1

(6p) For ¢t > 0 and 2 € [0, 1], the following time-dependent partial dif-
ferential equations are given. For each one of them, state whether they
are parabolic or hyperbolic, give the structure of the CFL condition
that would result if one chooses an explicit time stepping method, and
state for what equations an implicit time stepping method would be
preferable.

{(a) The convection-diffusion equation ug = uy + gy

{b) The wave cquation uy = Uz

(¢) The Schridinger equation iy = vz,

(d) The Korteweg—de Vries equation u; + Uty = —Ugzs

(e) The inviscid Burgers equation up +uu, =0
Solution.

{(a) Parabolic. % < 1. Better to use an implicit method.
(b) Hyperbolic. —g—: < 1. An explicit method is satisfactbry.
(c) Hyperbolic. 25 < 1. Better to use an implicit method.

(d) Hyperbolic. ﬁg < 1. Better to use an implicit method.

(e) Hyperbolic. :‘%% < 1. An explicit method is satisfactory.

. (5p) The Lax—~Wendroff method for the advection equation with @ > 0

and periodic boundary condifions,
U toauy; =0, 0<e<Ll, £20
u(z,0) = g(2),
is
ap

ap
uth = Oty + (1= P~ 0~ apu,

where 1 = At/Az is the Courant number.



(a) Rewrite this scheme as a matrix—vector recursion U™+t = C,U"
with U" = [u},u}, ..., uﬂr]T, giving the matrix €}, and the vec-
tor U9, taking care to define Az in accordance with the matrix
dimension V. Is the matrix symmetric, skew-symmetric, nonsym-
metrie, circulant, Toeplitz {give all characterizations that apply),
or of some other type? (3p)

(b) Put g == 1/a in the matrix. Calculate its cigenvalues and conclude
that the method is stable. (2p)

Solution. The NV x N matrix C), is

1—a?y? —ap(l —ap)/2 0 ap(l -+ ap)/2
ap(l + ap)/2 1-a*? —ap(l—ap)/2
—au(l — au)/2 0 ap(l +ap)/2 1 —a?u?

It is a nonsymmetric, Toeplitz, circulant matrix (due to the periedic
boundary conditions). The vector U® = {g(z), g(®2), . .., g(zn)]* rep-
resents the initial condition, with @; = j/N, i.e., Az =1/N.

In case ap = 1 we get the matrix
00
10

Cl/a = .
0 0 1 0
This is a cyclic permutation matrix, with Cﬂa = I. (After IV steps,
the wave has come back to its original position.)
If ¢y, has eigenvalues A, then C{\; . has eigenvalues AN, But since
C‘i\/r . = 1, we have MY =1, implying

Ae[C1 ] = 27/ h=1,...,N.

Because all eigenvalues have unit modulus and are simple, the method
is stable.
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Numerical Methods for Differential Equations FMN130.2-081218
Gustaf Soderlind

The exam starts at 14:00 and ends at 19:00. A minimum of 15 points out of
the total 30 are required to pass. These points will be added to your total
project score. For final grade requirements, see home page.

You are not allowed a computer, pocket calculator, textbook, lecture notes
or any other electronic or written material during the exam.

1. {Bp) Consider the explicit midpoint method

(2)
(b)
()

Yntl — Yn—1 = 2hf(yn)-

Determine whether the method is zero-stable or not. (1p)
Determine the consistency order of the method. {2p)

If the method is applied to the advection equation, then stability
can be determined by studying the linear test equation 4 = iwy
(note that in this special case we take A = iw). Find the condition
on hw for stability. (2p)

2. (6p) Consider Heun’s method, given by the Butcher tableau

(a)

(b)

(¢)
(d)

0ol o o
i1 0
1/2 1/2

Find its stability polynomial P(h)A). The boundary of the stabil-
ity region is given by the condition |P{z)| = 1. Determine its two
intersections with the real axis in the complex plane. {2p)

If the method is applied to a linear system of differential equa-
tions, § = TazYy, one gets a recursion ypp1 = Q(ATAz)¥n, where
@ is & polynomial. Find the polynomial @. (1p)

Let A[T'az] denote the eigenvalues of Ta,. What are the eigenval-
ues of Q(ATa-)? (1p)

As the method is explicit it cannot be A-stable. A student who
wants to solve the heat equation u; = u,, with an explicit method
knows that there will be a CFL condition, but he hopes that
using Heun’s method will enable him to use larger time steps than
Euler’s method allows with the CFL condition At//_\a:?' <1/2. Is
he right? (Assume that Ta, is the usual Toeplitz matrix). {2p)



3. (4p) The following nonlinear two-point boundary value problem is
given:

¥+ —y = g(x)
y(0) =0, y'(1) =0.

Introduce a grid and discretize with a standard second order finite
difference method. Be careful to define Az, write down all equations,
and show exactly how the boundary conditions affect the system by
writing down the first and the last equations separately. {(4p)

4. (4p) In the course we have studied Sturm-Liouville eigenvalue prob-
lems, such as in the Euler buckling of a beam of unit length,

i
w = du

with various boundary conditions depending on which buckling case
is considered. Here we shall consider Euler’s second buckling case, for
which the boundary conditions are

w(0) =0,  w(1)=0.

If we solve this with the standard 2nd order finite difference method,
as we have done in the course, we need to solve the algebraic eigenvalue
problem
Thsy = My

with Tag = tridiag(1 ~2 1)/Ax?. Let us call this Method A.
If instead we would work with the finite element method with piecewise
linear basis functions, one needs to solve a “generalized” eigenvalue
problem,

Tazy = ABy
with B = tridiag(1 4 1)/6. This is method B.

Finally, for the problem " = f there is a special finite difference
method known as Cowell’s method. In matrix-vector form it takes the
shape Tazy = Df, with D = tridiag(1 10 1)/12. If this method,
called C, is used to solve the eigenvalue problem, one also has to solve
a “generalized” eigenvalue problem,

Tazy = ADy.
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Figure 1: Eigenvalue error is plotted vs. step size Az for Methods A, B and
C, which use different FDM and FEM methods

The three methods were implemented and tested, with results dis-
played in Figure 1.

(a) Using the experimental data, determine the order of convergence
for the Finite Element Method and Cowell’s Method. (2p)

(b} Given that Cowell’s method approximates ¥’ = f(z) by Tazy =
Df, determine its consistency order theoretically. (Hint: Because
the method is symuetric its order will be even, so you do not
need to bother about checking whether the method is order i, 3,
5, and so on.)



5. (5p) Consider the following PDEs for t > 0 and =,y € [0,1]:

(a) e + uyy = (= y)
(b) wg+a-u; =0

{€) ue=ue + }::}eu.?:a:
(d) w =d-uge + f(u)
(e) uwr+ 5(uf)s = Uss

For each equation, classify the problem as elliptic, parebolic or hyper-
bolic. In addition, give the name of each equation, or, in case it has no
name, name it based on the terms that enter the equation.

6. (6p) We are going to solve the equation
wtau, =0 0<z<1, £t>=0,

for a > 0 with initial condition u(0, z) = g(2) and boundary condition
u(t,0) = f(t), using the Euler upwind scheme

ntl _ . n 7 i
up = ug el —ul ),

where the Courant number is given by pu = At/Az.

(a) Write this as a matrix-vector recursion U™ =T, U™ 4+ F? with
U = [uf, ud,...,ut", taking special care to define Az in terms
of the mumber of grid points used (that is, J; for clarity do not
hesitate to draw your grid). Give the matrix 7}, and the vector
F7, likewise defining their dimensions. (3p}

(b) Draw the computational stencil (“berdkningsmolekyl”) for this
method.{1p)

(c) Determine the eigenvalues of 7}, for 4 — 1/a. Is the method stable
then? {2p)
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Numerical Methods for Differential Equations FMIN130 080821
Gustaf Soderlind

The exam starts at 14:00 and ends at 19:00. A minimum of 15 points out of
the total 30 are required to pass. These points will be added to those you
obtained in your three projects.

You are not allowed a computer, pocket calculator, textbook, lecture notes
or any other electronic or written material during the exam.

1. {5p) Consider explicit multistep methods of the form

A9¥Yn+2 T Q1Ynt1 T QoYn = hﬁlf(yn+1) + hﬁﬁf(yn)

(a} First, specialize to methods with fy. Determine the remaining
coefficients of the method of the highest possible order, and verify
the order. Note: the method must be zero-stable. (3p)

(b) What is the highest possible order? (1p)

(¢) I you can also choose g # 0, can you obtain a zero-stable method
of a higher order than in the previous case? You may answer
either by referring to a suitable theorem or by checking whether
it is possible. {1p)

2. {5p)} Cousider the 2-stage Runge-Kutta method with Butcher tableau

ojo o0 0
1/311/3 0 0O
2/3| 0 2/3 0

[1/4 0 3/4

(a) Write down the formulas for using this method. (2p)
(b) Find its stability function R(hA). (2p)
{(¢) Is the method A-stable? (1p)

3. (5p) Consider the following linear two-point boundary value problem:

Y +2my — y = g(z)
y(0) =0, y(1) =L

(a) Introduce a grid and discretize with a standard second order
method. Be careful to show exactly how the boundary conditions
affect the system. (2p)

(b) Use the Fuclidean logarithmic norm and its properties to show
that this problem has a unique selution for every right-hand side
g(x). {You may state and use “well-known” values for the loga-
rithmic norms of the Toeplitz matrices involved.) (3p)



4. (5p) In the course we have studied Sturm-Liouville eigenvalue prob-
lems, such as in the Euler buckling of a beam of length L,

u" = A

with various boundary conditions depending on which buckling case
is considered. Here we shall consider Euler’s first buckling case, for
which the boundary conditions are

W(0) =0, wu(L)=0.

Construct a second order discretization of this problem, and make sure
to represent the boundary conditions to 2nd order accuracy. Write
down all details, such as how you have selected your grid size Az,
where the grid points are located, and how many they are. Finally,
state the algebraic eigenvalue problem that results, by giving all matrix
elements of the matrix whose eigenvaltes and eigenvectors are to be
determined.

5. (56p) Consider the following PD¥s for ¢ > 0 and = € [0,1]:
(@) wt+a-uz=d Uz
(b) we+a-ug=0
(€) u = d-uge + flu)
(d) w+ 3Hu?)e =0
(&) u gy
For each equation, classify the problem as elliptic, parabolic or hyper-

bolic. In addition, give the “name” of each equation, based on the terms
that enter the equation.

6. .(5p) The Lax-Friedrichs scheme for the equation
wtau, =0, 0<e<t, >0,
with a > 0 and periedic boundary conditions, is
ulth = (ufy g +uf1)/2 - aAt(ufy; — ufg)/(20).
(a) Let p = At/Az. Construct the matrix 7T}, for the system U™ =

T, U™ with U™ = [u},uf,...,u}]". Is the matrix symmetric,
skew-symmetric, unsymmetric, circulant, or of some other type?
(2p)

(b) Draw the computational stencil (“berikningsmolekyl”) for this
method with g = 1/a. Is the method an upwind or a downwind
method for this value of u7 (1p)

{c) Determine the eigenvalues of T}, for i = 1/a. (2p)



